/* * Copyright 2013-2019 Software Radio Systems Limited * * This file is part of srsLTE. * * srsLTE is free software: you can redistribute it and/or modify * it under the terms of the GNU Affero General Public License as * published by the Free Software Foundation, either version 3 of * the License, or (at your option) any later version. * * srsLTE is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Affero General Public License for more details. * * A copy of the GNU Affero General Public License can be found in * the LICENSE file in the top-level directory of this distribution * and at http://www.gnu.org/licenses/. * */ #include "srslte/phy/ue/ue_sync_nbiot.h" #include "srslte/phy/io/filesource.h" #include "srslte/phy/utils/debug.h" #include "srslte/phy/utils/vector.h" #include #include #include #include #include #include #define REPEAT_FROM_FILE 0 #define TIME_ALIGN_FROM_FILE 1 #define MAX_TIME_OFFSET 128 #define TRACK_MAX_LOST 4 #define TRACK_FRAME_SIZE 32 #define FIND_NOF_AVG_FRAMES 4 #define DEFAULT_SFO_EMA_COEFF 0.1 static cf_t dummy_buffer_nbiot0[15 * 2048 / 2]; static cf_t dummy_buffer_nbiot1[15 * 2048 / 2]; static cf_t* dummy_offset_buffer_nbiot[SRSLTE_MAX_PORTS] = {dummy_buffer_nbiot0, dummy_buffer_nbiot1, NULL, NULL}; ///< This is a list of CFO candidates that the sync object uses to pre-compensate the received signal static const float cfo_cands[] = {0.0, 1000.0, -1000.0, 2000.0, -2000.0, 3000.0, -3000.0, 4000.0, -4000.0, 5000.0, -5000.0}; int srslte_ue_sync_nbiot_init_file(srslte_nbiot_ue_sync_t* q, srslte_nbiot_cell_t cell, char* file_name, int offset_time, float offset_freq) { return srslte_ue_sync_nbiot_init_file_multi(q, cell, file_name, offset_time, offset_freq, 1); } int srslte_ue_sync_nbiot_init_file_multi(srslte_nbiot_ue_sync_t* q, srslte_nbiot_cell_t cell, char* file_name, int offset_time, float offset_freq, uint32_t nof_rx_ant) { int ret = SRSLTE_ERROR_INVALID_INPUTS; if (q != NULL && file_name != NULL && srslte_nofprb_isvalid(cell.base.nof_prb)) { ret = SRSLTE_ERROR; bzero(q, sizeof(srslte_nbiot_ue_sync_t)); q->file_mode = true; q->sf_len = SRSLTE_SF_LEN(srslte_symbol_sz(cell.base.nof_prb)); q->file_cfo = -offset_freq; q->correct_cfo = true; q->fft_size = srslte_symbol_sz(cell.base.nof_prb); if (nof_rx_ant != 1) { fprintf(stderr, "With file input, only single Rx antenna is supported.\n"); goto clean_exit; } q->nof_rx_antennas = nof_rx_ant; if (srslte_cfo_init(&q->file_cfo_correct, 2 * q->sf_len)) { fprintf(stderr, "Error initiating CFO\n"); goto clean_exit; } if (srslte_filesource_init(&q->file_source, file_name, SRSLTE_COMPLEX_FLOAT_BIN)) { fprintf(stderr, "Error opening file %s\n", file_name); goto clean_exit; } #if TIME_ALIGN_FROM_FILE q->frame_len = SRSLTE_NOF_SF_X_FRAME * q->sf_len; if (srslte_sync_nbiot_init(&q->sfind, q->frame_len, q->frame_len, q->fft_size)) { fprintf(stderr, "Error initiating sync find\n"); goto clean_exit; } int n = srslte_filesource_read(&q->file_source, dummy_buffer_nbiot0, q->frame_len); if (n != q->frame_len) { fprintf(stderr, "Error reading frame from file.\n"); exit(-1); } // find NPSS and set offset time parameter to beginning of next frame uint32_t peak_idx; if (srslte_sync_nbiot_find(&q->sfind, dummy_buffer_nbiot0, 0, &peak_idx) == SRSLTE_SYNC_ERROR) { fprintf(stderr, "Error finding NPSS peak\n"); exit(-1); } offset_time = (peak_idx - SRSLTE_NPSS_CORR_OFFSET + q->frame_len / 2) % q->frame_len; srslte_sync_nbiot_free(&q->sfind); #endif INFO("Offseting input file by %d samples and %.1f kHz\n", offset_time, offset_freq / 1000); srslte_filesource_read(&q->file_source, dummy_buffer_nbiot0, offset_time); srslte_ue_sync_nbiot_reset(q); ret = SRSLTE_SUCCESS; } clean_exit: if (ret == SRSLTE_ERROR) { srslte_ue_sync_nbiot_free(q); } return ret; } int srslte_ue_sync_nbiot_start_agc(srslte_nbiot_ue_sync_t* q, SRSLTE_AGC_CALLBACK(set_gain_callback), float init_gain_value) { uint32_t nframes = 0; if (q->nof_recv_sf == 1) { nframes = 10; } int n = srslte_agc_init_uhd(&q->agc, SRSLTE_AGC_MODE_PEAK_AMPLITUDE, nframes, set_gain_callback, q->stream); q->do_agc = n == 0 ? true : false; if (q->do_agc) { srslte_agc_set_gain(&q->agc, init_gain_value); } return n; } int recv_callback_nbiot_multi_to_single(void* h, cf_t* x[SRSLTE_MAX_PORTS], uint32_t nsamples, srslte_timestamp_t* t) { srslte_nbiot_ue_sync_t* q = (srslte_nbiot_ue_sync_t*)h; return q->recv_callback_single(q->stream_single, (void*)x[0], nsamples, t); } int srslte_ue_sync_nbiot_init(srslte_nbiot_ue_sync_t* q, srslte_nbiot_cell_t cell, int(recv_callback)(void*, void*, uint32_t, srslte_timestamp_t*), void* stream_handler) { int ret = srslte_ue_sync_nbiot_init_multi( q, SRSLTE_NBIOT_MAX_PRB, recv_callback_nbiot_multi_to_single, SRSLTE_NBIOT_NUM_RX_ANTENNAS, (void*)q); q->recv_callback_single = recv_callback; q->stream_single = stream_handler; return ret; } int srslte_ue_sync_nbiot_init_multi(srslte_nbiot_ue_sync_t* q, uint32_t max_prb, int(recv_callback)(void*, cf_t * [SRSLTE_MAX_PORTS], uint32_t, srslte_timestamp_t*), uint32_t nof_rx_antennas, void* stream_handler) { int ret = SRSLTE_ERROR_INVALID_INPUTS; if (q != NULL && stream_handler != NULL && srslte_nofprb_isvalid(max_prb) && recv_callback != NULL) { ret = SRSLTE_ERROR; bzero(q, sizeof(srslte_nbiot_ue_sync_t)); q->stream = stream_handler; q->recv_callback = recv_callback; q->fft_size = srslte_symbol_sz(max_prb); q->sf_len = SRSLTE_SF_LEN(q->fft_size); q->file_mode = false; q->correct_cfo = true; q->nof_rx_antennas = nof_rx_antennas; q->agc_period = 0; q->sample_offset_correct_period = DEFAULT_SAMPLE_OFFSET_CORRECT_PERIOD; q->sfo_ema = DEFAULT_SFO_EMA_COEFF; q->max_prb = max_prb; // we search for NPSS/NSSS in a full frame q->nof_recv_sf = 10; q->frame_len = q->nof_recv_sf * q->sf_len; if (srslte_sync_nbiot_init(&q->sfind, q->frame_len, q->frame_len, q->fft_size)) { fprintf(stderr, "Error initiating sync find\n"); goto clean_exit; } // in tracking phase we only sample for one subframe but still use the entire // subframe to run the correlation (TODO: use only one symbol?) if (srslte_sync_nbiot_init(&q->strack, q->sf_len, q->sf_len, q->fft_size)) { fprintf(stderr, "Error initiating sync track\n"); goto clean_exit; } srslte_ue_sync_nbiot_reset(q); ret = SRSLTE_SUCCESS; } clean_exit: if (ret == SRSLTE_ERROR) { srslte_ue_sync_nbiot_free(q); } return ret; } uint32_t srslte_ue_sync_nbiot_sf_len(srslte_nbiot_ue_sync_t* q) { return q->frame_len; } void srslte_ue_sync_nbiot_free(srslte_nbiot_ue_sync_t* q) { if (q->do_agc) { srslte_agc_free(&q->agc); } if (!q->file_mode) { srslte_sync_nbiot_free(&q->sfind); srslte_sync_nbiot_free(&q->strack); } else { srslte_filesource_free(&q->file_source); } bzero(q, sizeof(srslte_nbiot_ue_sync_t)); } int srslte_ue_sync_nbiot_set_cell(srslte_nbiot_ue_sync_t* q, srslte_nbiot_cell_t cell) { int ret = SRSLTE_ERROR_INVALID_INPUTS; if (q != NULL && srslte_nofprb_isvalid(cell.base.nof_prb)) { ret = SRSLTE_ERROR; if (cell.base.nof_prb > q->max_prb) { fprintf(stderr, "Error in nbiot_ue_sync_set_cell(): cell.base.nof_prb must be lower than initialized\n"); return SRSLTE_ERROR; } q->cell = cell; q->fft_size = srslte_symbol_sz(q->cell.base.nof_prb); q->sf_len = SRSLTE_SF_LEN(q->fft_size); q->agc_period = 0; // we search for NPSS/NSSS in a full frame q->nof_recv_sf = SRSLTE_NOF_SF_X_FRAME; q->frame_len = q->nof_recv_sf * q->sf_len; if (srslte_sync_nbiot_resize(&q->sfind, q->frame_len, q->frame_len, q->fft_size)) { fprintf(stderr, "Error resizing sync find\n"); return SRSLTE_ERROR; } if (srslte_sync_nbiot_resize(&q->strack, q->sf_len, q->sf_len, q->fft_size)) { fprintf(stderr, "Error resizing sync find\n"); return SRSLTE_ERROR; } srslte_ue_sync_nbiot_reset(q); ret = SRSLTE_SUCCESS; } return ret; } void srslte_ue_sync_nbiot_get_last_timestamp(srslte_nbiot_ue_sync_t* q, srslte_timestamp_t* timestamp) { memcpy(timestamp, &q->last_timestamp, sizeof(srslte_timestamp_t)); } uint32_t srslte_ue_sync_nbiot_peak_idx(srslte_nbiot_ue_sync_t* q) { return q->peak_idx; } srslte_nbiot_ue_sync_state_t srslte_ue_sync_nbiot_get_state(srslte_nbiot_ue_sync_t* q) { return q->state; } uint32_t srslte_ue_sync_nbiot_get_sfidx(srslte_nbiot_ue_sync_t* q) { return q->sf_idx; } void srslte_ue_sync_nbiot_set_cfo_enable(srslte_nbiot_ue_sync_t* q, bool enable) { srslte_sync_nbiot_set_cfo_enable(&q->sfind, enable); srslte_sync_nbiot_set_cfo_enable(&q->strack, enable); } float srslte_ue_sync_nbiot_get_cfo(srslte_nbiot_ue_sync_t* q) { return 15000 * (q->state == SF_TRACK ? srslte_sync_nbiot_get_cfo(&q->strack) : srslte_sync_nbiot_get_cfo(&q->sfind)); } void srslte_ue_sync_nbiot_set_cfo(srslte_nbiot_ue_sync_t* q, float cfo) { srslte_sync_nbiot_set_cfo(&q->sfind, cfo / 15000); srslte_sync_nbiot_set_cfo(&q->strack, cfo / 15000); } float srslte_ue_sync_nbiot_get_sfo(srslte_nbiot_ue_sync_t* q) { return q->mean_sfo / 5e-3; } int srslte_ue_sync_nbiot_get_last_sample_offset(srslte_nbiot_ue_sync_t* q) { return q->last_sample_offset; } void srslte_ue_sync_nbiot_set_sample_offset_correct_period(srslte_nbiot_ue_sync_t* q, uint32_t nof_subframes) { q->sample_offset_correct_period = nof_subframes; } void srslte_ue_sync_nbiot_set_cfo_ema(srslte_nbiot_ue_sync_t* q, float ema) { srslte_sync_nbiot_set_cfo_ema_alpha(&q->sfind, ema); srslte_sync_nbiot_set_cfo_ema_alpha(&q->strack, ema); } void srslte_ue_sync_nbiot_set_cfo_tol(srslte_nbiot_ue_sync_t* q, float cfo_tol) { srslte_sync_nbiot_set_cfo_tol(&q->sfind, cfo_tol); srslte_sync_nbiot_set_cfo_tol(&q->strack, cfo_tol); } void srslte_ue_sync_nbiot_set_sfo_ema(srslte_nbiot_ue_sync_t* q, float ema_coefficient) { q->sfo_ema = ema_coefficient; } void srslte_ue_sync_nbiot_set_agc_period(srslte_nbiot_ue_sync_t* q, uint32_t period) { q->agc_period = period; } static int find_peak_ok(srslte_nbiot_ue_sync_t* q, cf_t* input_buffer[SRSLTE_MAX_PORTS]) { // set subframe idx to NPSS position q->sf_idx = 5; q->frame_find_cnt++; DEBUG("Found peak %d at %d, value %.3f, n_id_ncell: %d\n", q->frame_find_cnt, q->peak_idx, srslte_sync_nbiot_get_peak_value(&q->sfind), q->cell.n_id_ncell); if (q->frame_find_cnt >= q->nof_avg_find_frames || q->peak_idx < 2 * q->fft_size) { int num_drop = (q->peak_idx - SRSLTE_NPSS_CORR_OFFSET + q->frame_len / 2) % q->frame_len; INFO("Realigning frame, reading %d samples\n", num_drop); /* Receive the rest of the subframe so that we are subframe aligned */ if (q->recv_callback(q->stream, input_buffer, num_drop, &q->last_timestamp) < 0) { return SRSLTE_ERROR; } ///< reset variables q->frame_ok_cnt = 0; q->frame_no_cnt = 0; q->frame_total_cnt = 0; q->frame_find_cnt = 0; q->mean_sample_offset = 0; q->sf_idx = 9; ///< adjust sampling parameters q->nof_recv_sf = 1; q->frame_len = q->nof_recv_sf * q->sf_len; ///< go to tracking state q->state = SF_TRACK; ///< Initialize track state CFO q->strack.mean_cfo = q->sfind.mean_cfo; q->strack.cfo_i = q->sfind.cfo_i; } return 0; } static int track_peak_ok(srslte_nbiot_ue_sync_t* q, uint32_t track_idx) { // Get sampling time offset q->last_sample_offset = ((int)track_idx - SRSLTE_NPSS_CORR_OFFSET); // Adjust sampling time every q->sample_offset_correct_period subframes uint32_t frame_idx = 0; if (q->sample_offset_correct_period) { frame_idx = q->frame_ok_cnt % q->sample_offset_correct_period; q->mean_sample_offset += (float)q->last_sample_offset / q->sample_offset_correct_period; } else { q->mean_sample_offset = q->last_sample_offset; } // Compute cumulative moving average time offset if (!frame_idx) { // Adjust RF sampling time based on the mean sampling offset q->next_rf_sample_offset = (int)round(q->mean_sample_offset); // Reset PSS averaging if correcting every a period longer than 1 if (q->sample_offset_correct_period > 1) { srslte_sync_nbiot_reset(&q->strack); } // Compute SFO based on mean sample offset if (q->sample_offset_correct_period) { q->mean_sample_offset /= q->sample_offset_correct_period; } q->mean_sfo = SRSLTE_VEC_EMA(q->mean_sample_offset, q->mean_sfo, q->sfo_ema); if (q->next_rf_sample_offset) { INFO("Time offset adjustment: %d samples (%.2f), mean SFO: %.2f Hz, %.5f samples/10-sf, ema=%f, length=%d\n", q->next_rf_sample_offset, q->mean_sample_offset, srslte_ue_sync_nbiot_get_sfo(q), q->mean_sfo, q->sfo_ema, q->sample_offset_correct_period); } q->mean_sample_offset = 0; } ///< If the NPSS peak is beyond the frame we sample too slow, discard the offseted samples to align next frame if (q->next_rf_sample_offset > 0 && q->next_rf_sample_offset < MAX_TIME_OFFSET) { DEBUG("Positive time offset %d samples.\n", q->next_rf_sample_offset); if (q->recv_callback( q->stream, &dummy_offset_buffer_nbiot[0], (uint32_t)q->next_rf_sample_offset, &q->last_timestamp) < 0) { fprintf(stderr, "Error receiving from USRP\n"); return SRSLTE_ERROR; } q->next_rf_sample_offset = 0; } q->peak_idx = q->sf_len / 2 + q->last_sample_offset; q->frame_ok_cnt++; return 1; } static int track_peak_no(srslte_nbiot_ue_sync_t* q) { ///< if we missed too many NPSS, we go back to FIND and consider this frame unsynchronized q->frame_no_cnt++; if (q->frame_no_cnt >= TRACK_MAX_LOST) { INFO("%d frames lost. Going back to FIND\n", (int)q->frame_no_cnt); q->nof_recv_sf = 10; q->frame_len = q->nof_recv_sf * q->sf_len; q->state = SF_FIND; return 0; } else { INFO("Tracking peak not found. Peak %.3f, %d lost\n", srslte_sync_nbiot_get_peak_value(&q->strack), (int)q->frame_no_cnt); /* printf("Saving files: pss_corr (%d), input (%d)\n", q->strack.pss.frame_size, SRSLTE_SF_LEN_PRB(q->cell.nof_prb)); srslte_vec_save_file("pss_corr", q->strack.pss.conv_output_avg, q->strack.pss.frame_size*sizeof(float)); srslte_vec_save_file("input", q->input_buffer, SRSLTE_SF_LEN_PRB(q->cell.nof_prb)*sizeof(cf_t)); exit(-1); */ return 1; } } static int receive_samples(srslte_nbiot_ue_sync_t* q, cf_t* input_buffer[SRSLTE_MAX_PORTS]) { ///< A negative time offset means there are samples in our buffer for the next subframe, because we are sampling too ///< fast if (q->next_rf_sample_offset < 0) { q->next_rf_sample_offset = -q->next_rf_sample_offset; } ///< Get N subframes from the USRP getting more samples and keeping the previous samples, if any cf_t* ptr[SRSLTE_MAX_PORTS] = {NULL, NULL, NULL, NULL}; for (int i = 0; i < q->nof_rx_antennas; i++) { ptr[i] = &input_buffer[i][q->next_rf_sample_offset]; } if (q->recv_callback(q->stream, ptr, q->frame_len - q->next_rf_sample_offset, &q->last_timestamp) < 0) { return SRSLTE_ERROR; } ///< reset time offset q->next_rf_sample_offset = 0; return SRSLTE_SUCCESS; } int srslte_ue_sync_nbiot_zerocopy(srslte_nbiot_ue_sync_t* q, cf_t* input_buffer) { cf_t* _input_buffer[SRSLTE_MAX_PORTS] = {NULL}; _input_buffer[0] = input_buffer; return srslte_ue_sync_nbiot_zerocopy_multi(q, _input_buffer); } /* Returns 1 if the subframe is synchronized in time, 0 otherwise */ int srslte_ue_sync_nbiot_zerocopy_multi(srslte_nbiot_ue_sync_t* q, cf_t** input_buffer) { int ret = SRSLTE_ERROR_INVALID_INPUTS; if (q != NULL) { if (q->file_mode) { int n = srslte_filesource_read(&q->file_source, input_buffer[0], q->sf_len); if (n < q->sf_len) { fprintf(stderr, "Error reading input file, read %d bytes\n", n); #if REPEAT_FROM_FILE srslte_filesource_seek(&q->file_source, 0); #else return SRSLTE_ERROR; #endif } if (q->correct_cfo) { for (int i = 0; i < q->nof_rx_antennas; i++) { srslte_cfo_correct(&q->file_cfo_correct, input_buffer[i], input_buffer[i], q->file_cfo / 15000 / q->fft_size); } } q->sf_idx++; if (q->sf_idx == 10) { q->sf_idx = 0; } DEBUG("Reading %d samples. sf_idx = %d\n", q->sf_len, q->sf_idx); ret = 1; } else { if (receive_samples(q, input_buffer)) { fprintf(stderr, "Error receiving samples\n"); return SRSLTE_ERROR; } switch (q->state) { case SF_FIND: switch (srslte_sync_nbiot_find(&q->sfind, input_buffer[0], 0, &q->peak_idx)) { case SRSLTE_SYNC_ERROR: ret = SRSLTE_ERROR; fprintf(stderr, "Error finding correlation peak (%d)\n", ret); return SRSLTE_ERROR; case SRSLTE_SYNC_FOUND: ret = find_peak_ok(q, input_buffer); break; case SRSLTE_SYNC_FOUND_NOSPACE: /* If a peak was found but there is not enough space for SSS/CP detection, discard a few samples */ printf("No space for SSS/CP detection. Realigning frame...\n"); q->recv_callback(q->stream, dummy_offset_buffer_nbiot, q->frame_len / 2, NULL); srslte_sync_nbiot_reset(&q->sfind); ret = SRSLTE_SUCCESS; break; default: ret = SRSLTE_SUCCESS; break; } if (q->do_agc) { srslte_agc_process(&q->agc, input_buffer[0], q->sf_len); } break; case SF_TRACK: ret = 1; q->sf_idx = (q->sf_idx + q->nof_recv_sf) % SRSLTE_NOF_SF_X_FRAME; ///< Every SF idx 5, find peak around known position q->peak_idx if (q->sf_idx == 5) { if (q->do_agc && (q->agc_period == 0 || (q->agc_period && (q->frame_total_cnt % q->agc_period) == 0))) { srslte_agc_process(&q->agc, input_buffer[0], q->sf_len); } #ifdef MEASURE_EXEC_TIME struct timeval t[3]; gettimeofday(&t[1], NULL); #endif uint32_t track_idx = 0; // Track NPSS around the expected position uint32_t find_offset = q->frame_len / 2 - q->strack.max_offset / 2; switch (srslte_sync_nbiot_find(&q->strack, input_buffer[0], find_offset, &track_idx)) { case SRSLTE_SYNC_ERROR: ret = SRSLTE_ERROR; fprintf(stderr, "Error tracking correlation peak\n"); return SRSLTE_ERROR; case SRSLTE_SYNC_FOUND: ret = track_peak_ok(q, track_idx); break; case SRSLTE_SYNC_FOUND_NOSPACE: // It's very very unlikely that we fall here because this event should happen at FIND phase only ret = 0; q->state = SF_FIND; printf("Warning: No space for SSS/CP while in tracking phase\n"); break; case SRSLTE_SYNC_NOFOUND: ret = track_peak_no(q); break; } #ifdef MEASURE_EXEC_TIME gettimeofday(&t[2], NULL); get_time_interval(t); q->mean_exec_time = (float)SRSLTE_VEC_CMA((float)t[0].tv_usec, q->mean_exec_time, q->frame_total_cnt); #endif if (ret == SRSLTE_ERROR) { fprintf(stderr, "Error processing tracking peak\n"); q->state = SF_FIND; return SRSLTE_SUCCESS; } q->frame_total_cnt++; } else { if (q->correct_cfo) { for (int i = 0; i < q->nof_rx_antennas; i++) { srslte_cfo_correct(&q->strack.cfocorr, input_buffer[i], input_buffer[i], -srslte_sync_nbiot_get_cfo(&q->strack) / q->fft_size); } } } break; } } } return ret; } void srslte_ue_sync_nbiot_reset(srslte_nbiot_ue_sync_t* q) { ///< Set default params srslte_sync_nbiot_set_cfo_enable(&q->sfind, true); srslte_sync_nbiot_set_cfo_enable(&q->strack, true); srslte_sync_nbiot_set_cfo_ema_alpha(&q->sfind, 0.15); srslte_sync_nbiot_set_cfo_ema_alpha(&q->strack, 0.01); ///< In find phase and if the cell is known, do not average NPSS correlation because we only capture 1 subframe and ///< do not know where the peak is. q->nof_avg_find_frames = 1; srslte_sync_nbiot_set_npss_ema_alpha(&q->sfind, 1.0); srslte_sync_nbiot_set_threshold(&q->sfind, 2.5); srslte_sync_nbiot_set_cfo_cand(&q->sfind, cfo_cands, sizeof(cfo_cands) / sizeof(float)); srslte_sync_nbiot_set_cfo_cand_test_enable(&q->sfind, true); srslte_sync_nbiot_set_npss_ema_alpha(&q->strack, 0.1); srslte_sync_nbiot_set_threshold(&q->strack, 1.2); if (!q->file_mode) { srslte_sync_nbiot_reset(&q->sfind); srslte_sync_nbiot_reset(&q->strack); } else { q->sf_idx = 9; } q->state = SF_FIND; q->frame_ok_cnt = 0; q->frame_no_cnt = 0; q->frame_total_cnt = 0; q->mean_sample_offset = 0.0; q->next_rf_sample_offset = 0; q->frame_find_cnt = 0; #ifdef MEASURE_EXEC_TIME q->mean_exec_time = 0; #endif }