/* * Copyright 2013-2019 Software Radio Systems Limited * * This file is part of srsLTE. * * srsLTE is free software: you can redistribute it and/or modify * it under the terms of the GNU Affero General Public License as * published by the Free Software Foundation, either version 3 of * the License, or (at your option) any later version. * * srsLTE is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Affero General Public License for more details. * * A copy of the GNU Affero General Public License can be found in * the LICENSE file in the top-level directory of this distribution * and at http://www.gnu.org/licenses/. * */ #include #include "srslte/common/log_filter.h" #include "srslte/upper/rlc_um.h" #define TESTASSERT(cond) \ { \ if (!(cond)) { \ std::cout << "[" << __FUNCTION__ << "][Line " << __LINE__ << "]: FAIL at " << (#cond) << std::endl; \ return -1; \ } \ } #define MAX_NBUFS 100 #define NBUFS 5 using namespace srslte; using namespace srsue; using namespace asn1::rrc; class mac_dummy_timers :public srslte::mac_interface_timers { public: srslte::timers::timer* timer_get(uint32_t timer_id) { return &t; } uint32_t timer_get_unique_id(){return 0;} void step() { t.step(); } void timer_release_id(uint32_t timer_id) {} private: srslte::timers::timer t; }; class rlc_um_tester :public pdcp_interface_rlc ,public rrc_interface_rlc { public: rlc_um_tester(){ bzero(sdus, sizeof(sdus)); n_sdus = 0; expected_sdu_len = 0; } // PDCP interface void write_pdu(uint32_t lcid, unique_byte_buffer sdu) { if (lcid != 3 && sdu->N_bytes != expected_sdu_len) { printf("Received PDU with size %d, expected %d. Exiting.\n", sdu->N_bytes, expected_sdu_len); exit(-1); } sdus[n_sdus++] = std::move(sdu); } void write_pdu_bcch_bch(unique_byte_buffer sdu) {} void write_pdu_bcch_dlsch(unique_byte_buffer sdu) {} void write_pdu_pcch(unique_byte_buffer sdu) {} void write_pdu_mch(uint32_t lcid, srslte::unique_byte_buffer sdu) { sdus[n_sdus++] = std::move(sdu); } // RRC interface void max_retx_attempted(){} std::string get_rb_name(uint32_t lcid) { return std::string(""); } void set_expected_sdu_len(uint32_t len) { expected_sdu_len = len; } unique_byte_buffer sdus[MAX_NBUFS]; int n_sdus; uint32_t expected_sdu_len; }; int basic_test() { srslte::log_filter log1("RLC_UM_1"); srslte::log_filter log2("RLC_UM_2"); log1.set_level(srslte::LOG_LEVEL_DEBUG); log2.set_level(srslte::LOG_LEVEL_DEBUG); log1.set_hex_limit(-1); log2.set_hex_limit(-1); rlc_um_tester tester; mac_dummy_timers timers; rlc_um rlc1; rlc_um rlc2; int len; log1.set_level(srslte::LOG_LEVEL_DEBUG); log2.set_level(srslte::LOG_LEVEL_DEBUG); rlc1.init(&log1, 3, &tester, &tester, &timers); rlc2.init(&log2, 3, &tester, &tester, &timers); rlc_cfg_c cnfg; cnfg.set(rlc_cfg_c::types::um_bi_dir); cnfg.um_bi_dir().dl_um_rlc.t_reordering = t_reordering_e::ms5; cnfg.um_bi_dir().dl_um_rlc.sn_field_len = sn_field_len_e::size10; cnfg.um_bi_dir().ul_um_rlc.sn_field_len = sn_field_len_e::size10; TESTASSERT(rlc1.configure(&cnfg) == true); TESTASSERT(rlc2.configure(&cnfg) == true); tester.set_expected_sdu_len(1); // Push 5 SDUs into RLC1 byte_buffer_pool* pool = byte_buffer_pool::get_instance(); unique_byte_buffer sdu_bufs[NBUFS]; for(int i=0;imsg = i; // Write the index into the buffer sdu_bufs[i]->N_bytes = 1; // Give each buffer a size of 1 byte rlc1.write_sdu(std::move(sdu_bufs[i])); } TESTASSERT(14 == rlc1.get_buffer_state()); // Read 5 PDUs from RLC1 (1 byte each) byte_buffer_t pdu_bufs[NBUFS]; for(int i=0;iN_bytes == 1); TESTASSERT(*(tester.sdus[i]->msg) == i); } return 0; } int loss_test() { srslte::log_filter log1("RLC_UM_1"); srslte::log_filter log2("RLC_UM_2"); log1.set_level(srslte::LOG_LEVEL_DEBUG); log2.set_level(srslte::LOG_LEVEL_DEBUG); log1.set_hex_limit(-1); log2.set_hex_limit(-1); rlc_um_tester tester; mac_dummy_timers timers; rlc_um rlc1; rlc_um rlc2; int len; log1.set_level(srslte::LOG_LEVEL_DEBUG); log2.set_level(srslte::LOG_LEVEL_DEBUG); rlc1.init(&log1, 3, &tester, &tester, &timers); rlc2.init(&log2, 3, &tester, &tester, &timers); rlc_cfg_c cnfg; cnfg.set(rlc_cfg_c::types::um_bi_dir); cnfg.um_bi_dir().dl_um_rlc.t_reordering = t_reordering_e::ms5; cnfg.um_bi_dir().dl_um_rlc.sn_field_len = sn_field_len_e::size10; cnfg.um_bi_dir().ul_um_rlc.sn_field_len = sn_field_len_e::size10; rlc1.configure(&cnfg); rlc2.configure(&cnfg); tester.set_expected_sdu_len(1); // Push 5 SDUs into RLC1 byte_buffer_pool* pool = byte_buffer_pool::get_instance(); unique_byte_buffer sdu_bufs[NBUFS]; for(int i=0;imsg[0] = i; // Write the index into the buffer sdu_bufs[i]->N_bytes = 1; // Give each buffer a size of 1 byte rlc1.write_sdu(std::move(sdu_bufs[i])); } TESTASSERT(14 == rlc1.get_buffer_state()); // Read 5 PDUs from RLC1 (1 byte each) byte_buffer_t pdu_bufs[NBUFS]; for(int i=0;iis_expired()) timers.timer_get(1)->step(); TESTASSERT(NBUFS - 1 == tester.n_sdus); return 0; } int basic_mbsfn_test() { srslte::log_filter log1("RLC_UM_1"); srslte::log_filter log2("RLC_UM_2"); log1.set_level(srslte::LOG_LEVEL_DEBUG); log2.set_level(srslte::LOG_LEVEL_DEBUG); log1.set_hex_limit(-1); log2.set_hex_limit(-1); rlc_um_tester tester; mac_dummy_timers timers; rlc_um rlc1; rlc_um rlc2; int len; log1.set_level(srslte::LOG_LEVEL_DEBUG); log2.set_level(srslte::LOG_LEVEL_DEBUG); rlc1.init(&log1, 3, &tester, &tester, &timers); rlc2.init(&log2, 3, &tester, &tester, &timers); rlc1.configure(srslte_rlc_config_t::mch_config()); rlc2.configure(srslte_rlc_config_t::mch_config()); tester.set_expected_sdu_len(1); // Push 5 SDUs into RLC1 byte_buffer_pool* pool = byte_buffer_pool::get_instance(); unique_byte_buffer sdu_bufs[NBUFS * 2]; for(int i=0;imsg[0] = i; // Write the index into the buffer sdu_bufs[i]->N_bytes = 1; // Give each buffer a size of 1 byte rlc1.write_sdu(std::move(sdu_bufs[i])); } TESTASSERT(13 == rlc1.get_buffer_state()); // Read 5 PDUs from RLC1 (1 byte each) byte_buffer_t pdu_bufs[NBUFS*2]; for(int i=0;iN_bytes == 1); TESTASSERT(*(tester.sdus[i]->msg) == i); } return 0; } // This test checks the reassembly routines when a PDU // is lost that contains the beginning of SDU segment. // The PDU that contains the end of this SDU _also_ contains // a segment of another SDU. // On reassembly of the SDUs, the missing start segment // should be detected and the complete SDU be discarded // Therefore, one SDU less should be received than was tx'ed. // This test sends PDU in two batches so it's not the reordering // timeout that detects the missing PDU but the fact more // PDUs than rx_mod are received. int reassmble_test() { srslte::log_filter log1("RLC_UM_1"); srslte::log_filter log2("RLC_UM_2"); log1.set_level(srslte::LOG_LEVEL_DEBUG); log2.set_level(srslte::LOG_LEVEL_DEBUG); log1.set_hex_limit(-1); log2.set_hex_limit(-1); rlc_um_tester tester; mac_dummy_timers timers; rlc_um rlc1; rlc_um rlc2; int len; log1.set_level(srslte::LOG_LEVEL_DEBUG); log2.set_level(srslte::LOG_LEVEL_DEBUG); rlc1.init(&log1, 3, &tester, &tester, &timers); rlc2.init(&log2, 3, &tester, &tester, &timers); rlc_cfg_c cnfg; cnfg.set(rlc_cfg_c::types::um_bi_dir); cnfg.um_bi_dir().dl_um_rlc.t_reordering = t_reordering_e::ms5; cnfg.um_bi_dir().dl_um_rlc.sn_field_len = sn_field_len_e::size5; cnfg.um_bi_dir().ul_um_rlc.sn_field_len = sn_field_len_e::size5; rlc1.configure(&cnfg); rlc2.configure(&cnfg); // Push SDUs into RLC1 const int n_sdus = 25; const int sdu_len = 100; tester.set_expected_sdu_len(sdu_len); const int n_sdu_first_batch = 17; byte_buffer_pool* pool = byte_buffer_pool::get_instance(); unique_byte_buffer sdu_bufs[n_sdus]; for(int i=0;imsg[k] = i; } sdu_bufs[i]->N_bytes = sdu_len; // Give each buffer a size of 1 byte rlc1.write_sdu(std::move(sdu_bufs[i])); } // Read PDUs from RLC1 (use smaller grant for first PDU and large for the rest) const int max_n_pdus = 100; int n_pdus = 0; byte_buffer_t* pdu_bufs[max_n_pdus]; for(int i=0;iallocate(); len = rlc1.read_pdu(pdu_bufs[i]->msg, (i == 0) ? sdu_len * 3 / 4 : sdu_len * 1.25); pdu_bufs[i]->N_bytes = len; if (len) { n_pdus++; } else { break; } } printf("Generated %d PDUs in first batch\n", n_pdus); TESTASSERT(0 == rlc1.get_buffer_state()); // push second batch of SDUs for (int i = n_sdu_first_batch; i < n_sdus; ++i) { sdu_bufs[i] = srslte::allocate_unique_buffer(*pool, true); for (int k = 0; k < sdu_len; ++k) { sdu_bufs[i]->msg[k] = i; } sdu_bufs[i]->N_bytes = sdu_len; // Give each buffer a size of 1 byte rlc1.write_sdu(std::move(sdu_bufs[i])); } // Read second batch of PDUs (use large grants) for(int i=n_pdus;iallocate(); len = rlc1.read_pdu(pdu_bufs[i]->msg, sdu_len * 1.25); pdu_bufs[i]->N_bytes = len; if (len) { n_pdus++; } else { // stop reading PDUs after first zero length PDU break; } } printf("Generated %d PDUs in total\n", n_pdus); // Write all PDUs into RLC2 except first one for(int i=0;imsg, pdu_bufs[i]->N_bytes); } } // We should have received one SDU less than we tx'ed TESTASSERT(tester.n_sdus == n_sdus - 1); for (int i = 0; i < tester.n_sdus; ++i) { TESTASSERT(tester.sdus[i]->N_bytes == sdu_len); } return 0; } // This reassmble test checks the reassembly routines when a PDU // is lost that _only_ contains the beginning of SDU segment, // while the next PDU contains the middle part of this SDU (and // yet another PDU the end part). // On reassembly of the SDUs, the missing start segment // should be detected and the complete SDU be discarded // Therefore, one SDU less should be received than was tx'ed. int reassmble_test2() { srslte::log_filter log1("RLC_UM_1"); srslte::log_filter log2("RLC_UM_2"); log1.set_level(srslte::LOG_LEVEL_DEBUG); log2.set_level(srslte::LOG_LEVEL_DEBUG); log1.set_hex_limit(-1); log2.set_hex_limit(-1); rlc_um_tester tester; mac_dummy_timers timers; rlc_um rlc1; rlc_um rlc2; int len; log1.set_level(srslte::LOG_LEVEL_DEBUG); log2.set_level(srslte::LOG_LEVEL_DEBUG); rlc1.init(&log1, 3, &tester, &tester, &timers); rlc2.init(&log2, 3, &tester, &tester, &timers); rlc_cfg_c cnfg; cnfg.set(rlc_cfg_c::types::um_bi_dir); cnfg.um_bi_dir().dl_um_rlc.t_reordering = t_reordering_e::ms5; cnfg.um_bi_dir().dl_um_rlc.sn_field_len = sn_field_len_e::size5; cnfg.um_bi_dir().ul_um_rlc.sn_field_len = sn_field_len_e::size5; rlc1.configure(&cnfg); rlc2.configure(&cnfg); // Push SDUs into RLC1 const int n_sdus = 25; const int sdu_len = 100; tester.set_expected_sdu_len(sdu_len); const int n_sdu_first_batch = 17; byte_buffer_pool* pool = byte_buffer_pool::get_instance(); unique_byte_buffer sdu_bufs[n_sdus]; for(int i=0;imsg[k] = i; } sdu_bufs[i]->N_bytes = sdu_len; rlc1.write_sdu(std::move(sdu_bufs[i])); } const int max_n_pdus = 100; int n_pdus = 0; byte_buffer_t* pdu_bufs[max_n_pdus]; for(int i=0;iallocate(); len = rlc1.read_pdu(pdu_bufs[i]->msg, (i == 0) ? sdu_len * .75 : sdu_len * .25); pdu_bufs[i]->N_bytes = len; if (len) { n_pdus++; } else { break; } } printf("Generated %d PDUs in first batch\n", n_pdus); TESTASSERT(0 == rlc1.get_buffer_state()); // push second batch of SDUs for (int i = n_sdu_first_batch; i < n_sdus; ++i) { sdu_bufs[i] = srslte::allocate_unique_buffer(*pool, true); for (int k = 0; k < sdu_len; ++k) { sdu_bufs[i]->msg[k] = i; } sdu_bufs[i]->N_bytes = sdu_len; // Give each buffer a size of 1 byte rlc1.write_sdu(std::move(sdu_bufs[i])); } // Read second batch of PDUs for(int i=n_pdus;iallocate(); len = rlc1.read_pdu(pdu_bufs[i]->msg, sdu_len * 1.25); pdu_bufs[i]->N_bytes = len; if (len) { n_pdus++; } else { break; } } printf("Generated %d PDUs in total\n", n_pdus); // Write all PDUs into RLC2 except first one for(int i=0;imsg, pdu_bufs[i]->N_bytes); } } // We should have received one SDU less than we tx'ed TESTASSERT(tester.n_sdus == n_sdus - 1); for (int i = 0; i < tester.n_sdus; ++i) { TESTASSERT(tester.sdus[i]->N_bytes == sdu_len); } return 0; } int main(int argc, char** argv) { if (basic_test()) { return -1; } byte_buffer_pool::get_instance()->cleanup(); if (loss_test()) { return -1; } byte_buffer_pool::get_instance()->cleanup(); if (basic_mbsfn_test()) { return -1; } byte_buffer_pool::get_instance()->cleanup(); if (reassmble_test()) { return -1; } byte_buffer_pool::get_instance()->cleanup(); if (reassmble_test2()) { return -1; } byte_buffer_pool::get_instance()->cleanup(); }