/** * * \section COPYRIGHT * * Copyright 2013-2017 Software Radio Systems Limited * * \section LICENSE * * This file is part of srsLTE. * * srsUE is free software: you can redistribute it and/or modify * it under the terms of the GNU Affero General Public License as * published by the Free Software Foundation, either version 3 of * the License, or (at your option) any later version. * * srsUE is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Affero General Public License for more details. * * A copy of the GNU Affero General Public License can be found in * the LICENSE file in the top-level directory of this distribution * and at http://www.gnu.org/licenses/. * */ #include #include "srsenb/hdr/enb.h" namespace srsenb { enb* enb::instance = NULL; pthread_mutex_t enb_instance_mutex = PTHREAD_MUTEX_INITIALIZER; enb* enb::get_instance(void) { pthread_mutex_lock(&enb_instance_mutex); if(NULL == instance) { instance = new enb(); } pthread_mutex_unlock(&enb_instance_mutex); return(instance); } void enb::cleanup(void) { srslte_dft_exit(); srslte::byte_buffer_pool::cleanup(); pthread_mutex_lock(&enb_instance_mutex); if(NULL != instance) { delete instance; instance = NULL; } pthread_mutex_unlock(&enb_instance_mutex); } enb::enb() : started(false) { srslte_dft_load(); pool = srslte::byte_buffer_pool::get_instance(); logger = NULL; args = NULL; bzero(&rf_metrics, sizeof(rf_metrics)); } enb::~enb() { for (uint32_t i = 0; i < phy_log.size(); i++) { delete (phy_log[i]); } } bool enb::init(all_args_t *args_) { args = args_; if (!args->log.filename.compare("stdout")) { logger = &logger_stdout; } else { logger_file.init(args->log.filename, args->log.file_max_size); logger_file.log("\n\n"); logger = &logger_file; } rf_log.init("RF ", logger); // Create array of pointers to phy_logs for (int i=0;iexpert.phy.nof_phy_threads;i++) { srslte::log_filter *mylog = new srslte::log_filter; char tmp[16]; sprintf(tmp, "PHY%d",i); mylog->init(tmp, logger, true); phy_log.push_back(mylog); } mac_log.init("MAC ", logger, true); rlc_log.init("RLC ", logger); pdcp_log.init("PDCP", logger); rrc_log.init("RRC ", logger); gtpu_log.init("GTPU", logger); s1ap_log.init("S1AP", logger); // Init logs rf_log.set_level(srslte::LOG_LEVEL_INFO); for (int i=0;iexpert.phy.nof_phy_threads;i++) { ((srslte::log_filter*) phy_log[i])->set_level(level(args->log.phy_level)); } mac_log.set_level(level(args->log.mac_level)); rlc_log.set_level(level(args->log.rlc_level)); pdcp_log.set_level(level(args->log.pdcp_level)); rrc_log.set_level(level(args->log.rrc_level)); gtpu_log.set_level(level(args->log.gtpu_level)); s1ap_log.set_level(level(args->log.s1ap_level)); for (int i=0;iexpert.phy.nof_phy_threads;i++) { ((srslte::log_filter*) phy_log[i])->set_hex_limit(args->log.phy_hex_limit); } mac_log.set_hex_limit(args->log.mac_hex_limit); rlc_log.set_hex_limit(args->log.rlc_hex_limit); pdcp_log.set_hex_limit(args->log.pdcp_hex_limit); rrc_log.set_hex_limit(args->log.rrc_hex_limit); gtpu_log.set_hex_limit(args->log.gtpu_hex_limit); s1ap_log.set_hex_limit(args->log.s1ap_hex_limit); // Set up pcap and trace if(args->pcap.enable) { mac_pcap.open(args->pcap.filename.c_str()); mac.start_pcap(&mac_pcap); } // Init layers /* Start Radio */ char *dev_name = NULL; if (args->rf.device_name.compare("auto")) { dev_name = (char*) args->rf.device_name.c_str(); } char *dev_args = NULL; if (args->rf.device_args.compare("auto")) { dev_args = (char*) args->rf.device_args.c_str(); } if(!radio.init(dev_args, dev_name, args->enb.nof_ports)) { printf("Failed to find device %s with args %s\n", args->rf.device_name.c_str(), args->rf.device_args.c_str()); return false; } // Set RF options if (args->rf.time_adv_nsamples.compare("auto")) { radio.set_tx_adv(atoi(args->rf.time_adv_nsamples.c_str())); } if (args->rf.burst_preamble.compare("auto")) { radio.set_burst_preamble(atof(args->rf.burst_preamble.c_str())); } radio.set_manual_calibration(&args->rf_cal); radio.set_rx_gain(args->rf.rx_gain); radio.set_tx_gain(args->rf.tx_gain); if (args->rf.dl_freq < 0) { args->rf.dl_freq = 1e6*srslte_band_fd(args->rf.dl_earfcn); if (args->rf.dl_freq < 0) { fprintf(stderr, "Error getting DL frequency for EARFCN=%d\n", args->rf.dl_earfcn); return false; } } if (args->rf.ul_freq < 0) { if (args->rf.ul_earfcn == 0) { args->rf.ul_earfcn = srslte_band_ul_earfcn(args->rf.dl_earfcn); } args->rf.ul_freq = 1e6*srslte_band_fu(args->rf.ul_earfcn); if (args->rf.ul_freq < 0) { fprintf(stderr, "Error getting UL frequency for EARFCN=%d\n", args->rf.dl_earfcn); return false; } } ((srslte::log_filter*) phy_log[0])->console("Setting frequency: DL=%.1f Mhz, UL=%.1f MHz\n", args->rf.dl_freq/1e6, args->rf.ul_freq/1e6); radio.set_tx_freq(args->rf.dl_freq); radio.set_rx_freq(args->rf.ul_freq); radio.register_error_handler(rf_msg); srslte_cell_t cell_cfg; phy_cfg_t phy_cfg; rrc_cfg_t rrc_cfg; if (parse_cell_cfg(args, &cell_cfg)) { fprintf(stderr, "Error parsing Cell configuration\n"); return false; } if (parse_sibs(args, &rrc_cfg, &phy_cfg)) { fprintf(stderr, "Error parsing SIB configuration\n"); return false; } if (parse_rr(args, &rrc_cfg)) { fprintf(stderr, "Error parsing Radio Resources configuration\n"); return false; } if (parse_drb(args, &rrc_cfg)) { fprintf(stderr, "Error parsing DRB configuration\n"); return false; } rrc_cfg.inactivity_timeout_ms = args->expert.rrc_inactivity_timer; // Copy cell struct to rrc and phy memcpy(&rrc_cfg.cell, &cell_cfg, sizeof(srslte_cell_t)); memcpy(&phy_cfg.cell, &cell_cfg, sizeof(srslte_cell_t)); // Init all layers phy.init(&args->expert.phy, &phy_cfg, &radio, &mac, phy_log); mac.init(&args->expert.mac, &cell_cfg, &phy, &rlc, &rrc, &mac_log); rlc.init(&pdcp, &rrc, &mac, &mac, &rlc_log); pdcp.init(&rlc, &rrc, >pu, &pdcp_log); rrc.init(&rrc_cfg, &phy, &mac, &rlc, &pdcp, &s1ap, >pu, &rrc_log); s1ap.init(args->enb.s1ap, &rrc, &s1ap_log); gtpu.init(args->enb.s1ap.gtp_bind_addr, args->enb.s1ap.mme_addr, &pdcp, >pu_log); started = true; return true; } void enb::pregenerate_signals(bool enable) { //phy.enable_pregen_signals(enable); } void enb::stop() { if(started) { gtpu.stop(); phy.stop(); mac.stop(); usleep(100000); rlc.stop(); pdcp.stop(); rrc.stop(); usleep(1e5); if(args->pcap.enable) { mac_pcap.close(); } radio.stop(); started = false; } } void enb::start_plot() { phy.start_plot(); } void enb::print_pool() { srslte::byte_buffer_pool::get_instance()->print_all_buffers(); } bool enb::get_metrics(enb_metrics_t &m) { m.rf = rf_metrics; bzero(&rf_metrics, sizeof(rf_metrics_t)); rf_metrics.rf_error = false; // Reset error flag phy.get_metrics(m.phy); mac.get_metrics(m.mac); rrc.get_metrics(m.rrc); s1ap.get_metrics(m.s1ap); m.running = started; return true; } void enb::rf_msg(srslte_rf_error_t error) { enb *u = enb::get_instance(); u->handle_rf_msg(error); } void enb::handle_rf_msg(srslte_rf_error_t error) { if(error.type == srslte_rf_error_t::SRSLTE_RF_ERROR_OVERFLOW) { rf_metrics.rf_o++; rf_metrics.rf_error = true; rf_log.warning("Overflow\n"); }else if(error.type == srslte_rf_error_t::SRSLTE_RF_ERROR_UNDERFLOW) { rf_metrics.rf_u++; rf_metrics.rf_error = true; rf_log.warning("Underflow\n"); } else if(error.type == srslte_rf_error_t::SRSLTE_RF_ERROR_LATE) { rf_metrics.rf_l++; rf_metrics.rf_error = true; rf_log.warning("Late\n"); } else if (error.type == srslte_rf_error_t::SRSLTE_RF_ERROR_OTHER) { std::string str(error.msg); str.erase(std::remove(str.begin(), str.end(), '\n'), str.end()); str.erase(std::remove(str.begin(), str.end(), '\r'), str.end()); str.push_back('\n'); rf_log.info("%s\n", str.c_str()); } } srslte::LOG_LEVEL_ENUM enb::level(std::string l) { boost::to_upper(l); if("NONE" == l){ return srslte::LOG_LEVEL_NONE; }else if("ERROR" == l){ return srslte::LOG_LEVEL_ERROR; }else if("WARNING" == l){ return srslte::LOG_LEVEL_WARNING; }else if("INFO" == l){ return srslte::LOG_LEVEL_INFO; }else if("DEBUG" == l){ return srslte::LOG_LEVEL_DEBUG; }else{ return srslte::LOG_LEVEL_NONE; } } } // namespace srsenb