/** * * \section COPYRIGHT * * Copyright 2013-2021 Software Radio Systems Limited * * By using this file, you agree to the terms and conditions set * forth in the LICENSE file which can be found at the top level of * the distribution. * */ #ifndef SRSRAN_RLC_AM_LTE_H #define SRSRAN_RLC_AM_LTE_H #include "srsran/adt/accumulators.h" #include "srsran/adt/circular_array.h" #include "srsran/adt/circular_map.h" #include "srsran/adt/intrusive_list.h" #include "srsran/common/buffer_pool.h" #include "srsran/common/common.h" #include "srsran/common/task_scheduler.h" #include "srsran/common/timeout.h" #include "srsran/interfaces/pdcp_interface_types.h" #include "srsran/rlc/rlc_am_base.h" #include "srsran/rlc/rlc_common.h" #include "srsran/support/srsran_assert.h" #include "srsran/upper/byte_buffer_queue.h" #include #include #include namespace srsran { #undef RLC_AM_BUFFER_DEBUG class rlc_amd_tx_pdu; class pdcp_pdu_info; /// Pool that manages the allocation of RLC AM PDU Segments to RLC PDUs and tracking of segments ACK state struct rlc_am_pdu_segment_pool { const static size_t MAX_POOL_SIZE = 16384; using rlc_list_tag = default_intrusive_tag; struct free_list_tag {}; /// RLC AM PDU Segment, containing the PDCP SN and RLC SN it has been assigned to, and its current ACK state struct segment_resource : public intrusive_forward_list_element, public intrusive_forward_list_element, public intrusive_double_linked_list_element<> { const static uint32_t invalid_rlc_sn = std::numeric_limits::max(); const static uint32_t invalid_pdcp_sn = std::numeric_limits::max() - 1; // -1 for Status Report int id() const; void release_pdcp_sn(); void release_rlc_sn(); uint32_t rlc_sn() const { return rlc_sn_; } uint32_t pdcp_sn() const { return pdcp_sn_; } bool empty() const { return rlc_sn_ == invalid_rlc_sn and pdcp_sn_ == invalid_pdcp_sn; } private: friend struct rlc_am_pdu_segment_pool; uint32_t rlc_sn_ = invalid_rlc_sn; uint32_t pdcp_sn_ = invalid_pdcp_sn; rlc_am_pdu_segment_pool* parent_pool = nullptr; }; rlc_am_pdu_segment_pool(); rlc_am_pdu_segment_pool(const rlc_am_pdu_segment_pool&) = delete; rlc_am_pdu_segment_pool(rlc_am_pdu_segment_pool&&) = delete; rlc_am_pdu_segment_pool& operator=(const rlc_am_pdu_segment_pool&) = delete; rlc_am_pdu_segment_pool& operator=(rlc_am_pdu_segment_pool&&) = delete; bool has_segments() const { return not free_list.empty(); } bool make_segment(rlc_amd_tx_pdu& rlc_list, pdcp_pdu_info& pdcp_info); private: intrusive_forward_list free_list; std::array segments; }; /// RLC AM PDU Segment, containing the PDCP SN and RLC SN it has been assigned to, and its current ACK state using rlc_am_pdu_segment = rlc_am_pdu_segment_pool::segment_resource; struct rlc_amd_rx_pdu { rlc_amd_pdu_header_t header; unique_byte_buffer_t buf; uint32_t rlc_sn; rlc_amd_rx_pdu() = default; explicit rlc_amd_rx_pdu(uint32_t rlc_sn_) : rlc_sn(rlc_sn_) {} }; struct rlc_amd_rx_pdu_segments_t { std::list segments; }; /// Class that contains the parameters and state (e.g. segments) of a RLC PDU class rlc_amd_tx_pdu { using list_type = intrusive_forward_list; const static uint32_t invalid_rlc_sn = std::numeric_limits::max(); list_type list; public: using iterator = typename list_type::iterator; using const_iterator = typename list_type::const_iterator; const uint32_t rlc_sn = invalid_rlc_sn; uint32_t retx_count = 0; rlc_amd_pdu_header_t header; unique_byte_buffer_t buf; explicit rlc_amd_tx_pdu(uint32_t rlc_sn_) : rlc_sn(rlc_sn_) {} rlc_amd_tx_pdu(const rlc_amd_tx_pdu&) = delete; rlc_amd_tx_pdu(rlc_amd_tx_pdu&& other) noexcept = default; rlc_amd_tx_pdu& operator=(const rlc_amd_tx_pdu& other) = delete; rlc_amd_tx_pdu& operator=(rlc_amd_tx_pdu&& other) = delete; ~rlc_amd_tx_pdu(); // Segment List Interface void add_segment(rlc_am_pdu_segment& segment) { list.push_front(&segment); } const_iterator begin() const { return list.begin(); } const_iterator end() const { return list.end(); } iterator begin() { return list.begin(); } iterator end() { return list.end(); } }; struct rlc_amd_retx_t { uint32_t sn; bool is_segment; uint32_t so_start; uint32_t so_end; }; struct rlc_sn_info_t { uint32_t sn; bool is_acked; }; /// Class that contains the parameters and state (e.g. unACKed segments) of a PDCP PDU class pdcp_pdu_info { using list_type = intrusive_double_linked_list; list_type list; // List of unACKed RLC PDUs that contain segments that belong to the PDCP PDU. public: const static uint32_t status_report_sn = std::numeric_limits::max(); const static uint32_t invalid_pdcp_sn = std::numeric_limits::max() - 1; using iterator = typename list_type::iterator; using const_iterator = typename list_type::const_iterator; // Copy is forbidden to avoid multiple PDCP SN references to the same segment pdcp_pdu_info() = default; pdcp_pdu_info(pdcp_pdu_info&&) noexcept = default; pdcp_pdu_info(const pdcp_pdu_info&) noexcept = delete; pdcp_pdu_info& operator=(const pdcp_pdu_info&) noexcept = delete; pdcp_pdu_info& operator=(pdcp_pdu_info&&) noexcept = default; ~pdcp_pdu_info() { clear(); } uint32_t sn = invalid_pdcp_sn; bool fully_txed = false; // Boolean indicating if the SDU is fully transmitted. bool fully_acked() const { return fully_txed and list.empty(); } bool valid() const { return sn != invalid_pdcp_sn; } // Interface for list of unACKed RLC segments of the PDCP PDU void add_segment(rlc_am_pdu_segment& segment) { list.push_front(&segment); } void ack_segment(rlc_am_pdu_segment& segment); void clear() { sn = invalid_pdcp_sn; fully_txed = false; while (not list.empty()) { ack_segment(list.front()); } } const_iterator begin() const { return list.begin(); } const_iterator end() const { return list.end(); } }; template struct rlc_ringbuffer_t { T& add_pdu(size_t sn) { srsran_expect(not has_sn(sn), "The same SN=%zd should not be added twice", sn); window.overwrite(sn, T(sn)); return window[sn]; } void remove_pdu(size_t sn) { srsran_expect(has_sn(sn), "The removed SN=%zd is not in the window", sn); window.erase(sn); } T& operator[](size_t sn) { return window[sn]; } size_t size() const { return window.size(); } bool empty() const { return window.empty(); } void clear() { window.clear(); } bool has_sn(uint32_t sn) const { return window.contains(sn); } // Return the sum data bytes of all active PDUs (check PDU is non-null) uint32_t get_buffered_bytes() { uint32_t buff_size = 0; for (const auto& pdu : window) { if (pdu.second.buf != nullptr) { buff_size += pdu.second.buf->N_bytes; } } return buff_size; } private: srsran::static_circular_map window; }; struct buffered_pdcp_pdu_list { public: explicit buffered_pdcp_pdu_list(); void clear(); void add_pdcp_sdu(uint32_t sn) { srsran_expect(sn <= max_pdcp_sn or sn == status_report_sn, "Invalid PDCP SN=%d", sn); srsran_assert(not has_pdcp_sn(sn), "Cannot re-add same PDCP SN twice"); pdcp_pdu_info& pdu = get_pdu_(sn); if (pdu.valid()) { pdu.clear(); count--; } pdu.sn = sn; count++; } void clear_pdcp_sdu(uint32_t sn) { pdcp_pdu_info& pdu = get_pdu_(sn); if (not pdu.valid()) { return; } pdu.clear(); count--; } pdcp_pdu_info& operator[](uint32_t sn) { srsran_expect(has_pdcp_sn(sn), "Invalid access to non-existent PDCP SN=%d", sn); return get_pdu_(sn); } bool has_pdcp_sn(uint32_t pdcp_sn) const { srsran_expect(pdcp_sn <= max_pdcp_sn or pdcp_sn == status_report_sn, "Invalid PDCP SN=%d", pdcp_sn); return get_pdu_(pdcp_sn).sn == pdcp_sn; } uint32_t nof_sdus() const { return count; } private: const static size_t max_pdcp_sn = 262143u; const static size_t buffer_size = 4096u; const static uint32_t status_report_sn = pdcp_pdu_info::status_report_sn; pdcp_pdu_info& get_pdu_(uint32_t sn) { return (sn == status_report_sn) ? status_report_pdu : buffered_pdus[static_cast(sn % buffer_size)]; } const pdcp_pdu_info& get_pdu_(uint32_t sn) const { return (sn == status_report_sn) ? status_report_pdu : buffered_pdus[static_cast(sn % buffer_size)]; } // size equal to buffer_size std::vector buffered_pdus; pdcp_pdu_info status_report_pdu; uint32_t count = 0; }; class pdu_retx_queue { public: rlc_amd_retx_t& push() { assert(not full()); rlc_amd_retx_t& p = buffer[wpos]; wpos = (wpos + 1) % RLC_AM_WINDOW_SIZE; return p; } void pop() { rpos = (rpos + 1) % RLC_AM_WINDOW_SIZE; } rlc_amd_retx_t& front() { assert(not empty()); return buffer[rpos]; } void clear() { wpos = 0; rpos = 0; } bool has_sn(uint32_t sn) const { for (size_t i = rpos; i != wpos; i = (i + 1) % RLC_AM_WINDOW_SIZE) { if (buffer[i].sn == sn) { return true; } } return false; } size_t size() const { return (wpos >= rpos) ? wpos - rpos : RLC_AM_WINDOW_SIZE + wpos - rpos; } bool empty() const { return wpos == rpos; } bool full() const { return size() == RLC_AM_WINDOW_SIZE - 1; } private: std::array buffer; size_t wpos = 0; size_t rpos = 0; }; class rlc_am_lte : public rlc_common { public: rlc_am_lte(srslog::basic_logger& logger, uint32_t lcid_, srsue::pdcp_interface_rlc* pdcp_, srsue::rrc_interface_rlc* rrc_, srsran::timer_handler* timers_); bool configure(const rlc_config_t& cfg_); void reestablish(); void stop(); void empty_queue(); rlc_mode_t get_mode(); uint32_t get_bearer(); // PDCP interface void write_sdu(unique_byte_buffer_t sdu); void discard_sdu(uint32_t pdcp_sn); bool sdu_queue_is_full(); // MAC interface bool has_data(); uint32_t get_buffer_state(); uint32_t read_pdu(uint8_t* payload, uint32_t nof_bytes); void write_pdu(uint8_t* payload, uint32_t nof_bytes); rlc_bearer_metrics_t get_metrics(); void reset_metrics(); void set_bsr_callback(bsr_callback_t callback); private: // Transmitter sub-class class rlc_am_lte_tx : public timer_callback { public: rlc_am_lte_tx(rlc_am_lte* parent_); ~rlc_am_lte_tx(); bool configure(const rlc_config_t& cfg_); void empty_queue(); void reestablish(); void stop(); int write_sdu(unique_byte_buffer_t sdu); uint32_t read_pdu(uint8_t* payload, uint32_t nof_bytes); void discard_sdu(uint32_t discard_sn); bool sdu_queue_is_full(); bool has_data(); uint32_t get_buffer_state(); // Timeout callback interface void timer_expired(uint32_t timeout_id); // Interface for Rx subclass void handle_control_pdu(uint8_t* payload, uint32_t nof_bytes); void set_bsr_callback(bsr_callback_t callback); private: int build_status_pdu(uint8_t* payload, uint32_t nof_bytes); int build_retx_pdu(uint8_t* payload, uint32_t nof_bytes); int build_segment(uint8_t* payload, uint32_t nof_bytes, rlc_amd_retx_t retx); int build_data_pdu(uint8_t* payload, uint32_t nof_bytes); void update_notification_ack_info(uint32_t rlc_sn); void debug_state(); int required_buffer_size(const rlc_amd_retx_t& retx); void retransmit_pdu(uint32_t sn); // Helpers bool poll_required(); bool do_status(); void check_sn_reached_max_retx(uint32_t sn); rlc_am_lte* parent = nullptr; byte_buffer_pool* pool = nullptr; srslog::basic_logger& logger; rlc_am_pdu_segment_pool segment_pool; /**************************************************************************** * Configurable parameters * Ref: 3GPP TS 36.322 v10.0.0 Section 7 ***************************************************************************/ rlc_am_config_t cfg = {}; // TX SDU buffers byte_buffer_queue tx_sdu_queue; unique_byte_buffer_t tx_sdu; bool tx_enabled = false; /**************************************************************************** * State variables and counters * Ref: 3GPP TS 36.322 v10.0.0 Section 7 ***************************************************************************/ // Tx state variables uint32_t vt_a = 0; // ACK state. SN of next PDU in sequence to be ACKed. Low edge of tx window. uint32_t vt_ms = RLC_AM_WINDOW_SIZE; // Max send state. High edge of tx window. vt_a + window_size. uint32_t vt_s = 0; // Send state. SN to be assigned for next PDU. uint32_t poll_sn = 0; // Poll send state. SN of most recent PDU txed with poll bit set. // Tx counters uint32_t pdu_without_poll = 0; uint32_t byte_without_poll = 0; rlc_status_pdu_t tx_status; /**************************************************************************** * Timers * Ref: 3GPP TS 36.322 v10.0.0 Section 7 ***************************************************************************/ srsran::timer_handler::unique_timer poll_retx_timer; srsran::timer_handler::unique_timer status_prohibit_timer; // SDU info for PDCP notifications buffered_pdcp_pdu_list undelivered_sdu_info_queue; // Callback function for buffer status report bsr_callback_t bsr_callback; // Tx windows rlc_ringbuffer_t tx_window; pdu_retx_queue retx_queue; pdcp_sn_vector_t notify_info_vec; // Mutexes std::mutex mutex; // default to RLC SDU queue length const uint32_t MAX_SDUS_PER_RLC_PDU = RLC_TX_QUEUE_LEN; }; // Receiver sub-class class rlc_am_lte_rx : public timer_callback { public: rlc_am_lte_rx(rlc_am_lte* parent_); ~rlc_am_lte_rx(); bool configure(rlc_am_config_t cfg_); void reestablish(); void stop(); void write_pdu(uint8_t* payload, uint32_t nof_bytes); uint32_t get_rx_buffered_bytes(); // returns sum of PDUs in rx_window uint32_t get_sdu_rx_latency_ms(); // Timeout callback interface void timer_expired(uint32_t timeout_id); // Functions needed by Tx subclass to query rx state int get_status_pdu_length(); int get_status_pdu(rlc_status_pdu_t* status, const uint32_t nof_bytes); bool get_do_status(); private: void handle_data_pdu(uint8_t* payload, uint32_t nof_bytes, rlc_amd_pdu_header_t& header); void handle_data_pdu_segment(uint8_t* payload, uint32_t nof_bytes, rlc_amd_pdu_header_t& header); void reassemble_rx_sdus(); bool inside_rx_window(const int16_t sn); void debug_state(); void print_rx_segments(); bool add_segment_and_check(rlc_amd_rx_pdu_segments_t* pdu, rlc_amd_rx_pdu* segment); void reset_status(); rlc_am_lte* parent = nullptr; byte_buffer_pool* pool = nullptr; srslog::basic_logger& logger; /**************************************************************************** * Configurable parameters * Ref: 3GPP TS 36.322 v10.0.0 Section 7 ***************************************************************************/ rlc_am_config_t cfg = {}; // RX SDU buffers unique_byte_buffer_t rx_sdu; /**************************************************************************** * State variables and counters * Ref: 3GPP TS 36.322 v10.0.0 Section 7 ***************************************************************************/ // Rx state variables uint32_t vr_r = 0; // Receive state. SN following last in-sequence received PDU. Low edge of rx window uint32_t vr_mr = RLC_AM_WINDOW_SIZE; // Max acceptable receive state. High edge of rx window. vr_r + window size. uint32_t vr_x = 0; // t_reordering state. SN following PDU which triggered t_reordering. uint32_t vr_ms = 0; // Max status tx state. Highest possible value of SN for ACK_SN in status PDU. uint32_t vr_h = 0; // Highest rx state. SN following PDU with highest SN among rxed PDUs. // Mutex to protect members std::mutex mutex; // Rx windows rlc_ringbuffer_t rx_window; std::map rx_segments; bool poll_received = false; std::atomic do_status = {false}; // light-weight access from Tx entity /**************************************************************************** * Timers * Ref: 3GPP TS 36.322 v10.0.0 Section 7 ***************************************************************************/ srsran::timer_handler::unique_timer reordering_timer; srsran::rolling_average sdu_rx_latency_ms; }; // Common variables needed/provided by parent class srsue::rrc_interface_rlc* rrc = nullptr; srslog::basic_logger& logger; srsue::pdcp_interface_rlc* pdcp = nullptr; srsran::timer_handler* timers = nullptr; uint32_t lcid = 0; rlc_config_t cfg = {}; std::string rb_name; static const int poll_periodicity = 8; // After how many data PDUs a status PDU shall be requested // Rx and Tx objects rlc_am_lte_tx tx; rlc_am_lte_rx rx; std::mutex metrics_mutex; rlc_bearer_metrics_t metrics = {}; }; /**************************************************************************** * Header pack/unpack helper functions * Ref: 3GPP TS 36.322 v10.0.0 Section 6.2.1 ***************************************************************************/ void rlc_am_read_data_pdu_header(byte_buffer_t* pdu, rlc_amd_pdu_header_t* header); void rlc_am_read_data_pdu_header(uint8_t** payload, uint32_t* nof_bytes, rlc_amd_pdu_header_t* header); void rlc_am_write_data_pdu_header(rlc_amd_pdu_header_t* header, byte_buffer_t* pdu); void rlc_am_write_data_pdu_header(rlc_amd_pdu_header_t* header, uint8_t** payload); void rlc_am_read_status_pdu(byte_buffer_t* pdu, rlc_status_pdu_t* status); void rlc_am_read_status_pdu(uint8_t* payload, uint32_t nof_bytes, rlc_status_pdu_t* status); void rlc_am_write_status_pdu(rlc_status_pdu_t* status, byte_buffer_t* pdu); int rlc_am_write_status_pdu(rlc_status_pdu_t* status, uint8_t* payload); uint32_t rlc_am_packed_length(rlc_amd_pdu_header_t* header); uint32_t rlc_am_packed_length(rlc_status_pdu_t* status); uint32_t rlc_am_packed_length(rlc_amd_retx_t retx); bool rlc_am_is_valid_status_pdu(const rlc_status_pdu_t& status, uint32_t rx_win_min = 0); bool rlc_am_is_pdu_segment(uint8_t* payload); std::string rlc_am_undelivered_sdu_info_to_string(const std::map& info_queue); void log_rlc_amd_pdu_header_to_string(srslog::log_channel& log_ch, const rlc_amd_pdu_header_t& header); bool rlc_am_start_aligned(const uint8_t fi); bool rlc_am_end_aligned(const uint8_t fi); bool rlc_am_is_unaligned(const uint8_t fi); bool rlc_am_not_start_aligned(const uint8_t fi); } // namespace srsran #endif // SRSRAN_RLC_AM_LTE_H