/* * Copyright 2013-2019 Software Radio Systems Limited * * This file is part of srsLTE. * * srsLTE is free software: you can redistribute it and/or modify * it under the terms of the GNU Affero General Public License as * published by the Free Software Foundation, either version 3 of * the License, or (at your option) any later version. * * srsLTE is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Affero General Public License for more details. * * A copy of the GNU Affero General Public License can be found in * the LICENSE file in the top-level directory of this distribution * and at http://www.gnu.org/licenses/. * */ #include "srslte/common/buffer_pool.h" #include "srslte/common/log_filter.h" #include "srslte/common/security.h" #include "srslte/upper/pdcp_entity_nr.h" #include #define TESTASSERT(cond) \ { \ if (!(cond)) { \ std::cout << "[" << __FUNCTION__ << "][Line " << __LINE__ << "]: FAIL at " << (#cond) << std::endl; \ return -1; \ } \ } // Encription and Integrity Keys uint8_t k_int[] = {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x28, 0x29, 0x30, 0x31}; uint8_t k_enc[] = {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x28, 0x29, 0x30, 0x31}; // Test SDUs for tx uint8_t sdu1[] = {0x18, 0xE2}; uint32_t SDU1_LEN = 2; // Test PDUs for rx uint8_t pdu1[] = {0x80, 0x00, 0x8f, 0xe3, 0xe0, 0xdf, 0x82, 0x92}; uint32_t PDU1_LEN = 8; // fake classes class rlc_dummy : public srsue::rlc_interface_pdcp { public: rlc_dummy(srslte::log* log_) : log(log_) {} const srslte::unique_byte_buffer_t& get_last_pdcp_pdu() { return last_pdcp_pdu; } void write_sdu(uint32_t lcid, srslte::unique_byte_buffer_t sdu, bool blocking = true) { log->info_hex(sdu->msg, sdu->N_bytes, "RLC SDU"); last_pdcp_pdu.swap(sdu); } private: srslte::log* log; srslte::unique_byte_buffer_t last_pdcp_pdu; bool rb_is_um(uint32_t lcid) { return false; } }; class rrc_dummy : public srsue::rrc_interface_pdcp { public: rrc_dummy(srslte::log* log_) : log(log_) {} void write_pdu(uint32_t lcid, srslte::unique_byte_buffer_t pdu) {} void write_pdu_bcch_bch(srslte::unique_byte_buffer_t pdu) {} void write_pdu_bcch_dlsch(srslte::unique_byte_buffer_t pdu) {} void write_pdu_pcch(srslte::unique_byte_buffer_t pdu) {} void write_pdu_mch(uint32_t lcid, srslte::unique_byte_buffer_t pdu) {} std::string get_rb_name(uint32_t lcid) { return "None"; } private: srslte::log* log; }; class gw_dummy : public srsue::gw_interface_pdcp { public: gw_dummy(srslte::log* log_) : log(log_) {} void write_pdu(uint32_t lcid, srslte::unique_byte_buffer_t pdu) {} void write_pdu_mch(uint32_t lcid, srslte::unique_byte_buffer_t pdu) {} private: srslte::log* log; }; /* * Test 1: PDCP Entity TX * Configure PDCP entity with EIA2 and EEA2 * TX_NEXT initially at 0. * Input: {0x18, 0xE2} * Output: PDCP Header {0x80,0x00}, Ciphered Text {0x8f, 0xe3}, MAC-I {0xe0, 0xdf, 0x82, 0x92} */ int test_tx_basic(srslte::byte_buffer_pool* pool, srslte::log* log) { srslte::pdcp_entity_nr pdcp; srslte::srslte_pdcp_config_t cfg = {1, srslte::PDCP_RB_IS_DRB, SECURITY_DIRECTION_UPLINK, srslte::PDCP_SN_LEN_12}; rlc_dummy rlc(log); rrc_dummy rrc(log); gw_dummy gw(log); pdcp.init(&rlc, &rrc, &gw, log, 0, cfg); pdcp.config_security(k_enc, k_int, k_enc, k_int, srslte::CIPHERING_ALGORITHM_ID_128_EEA2, srslte::INTEGRITY_ALGORITHM_ID_128_EIA2); pdcp.enable_integrity(); pdcp.enable_encryption(); // Test SDU srslte::unique_byte_buffer_t sdu = allocate_unique_buffer(*pool); memcpy(sdu->msg, sdu1, SDU1_LEN); sdu->N_bytes = SDU1_LEN; // Expected PDCP PDU srslte::unique_byte_buffer_t pdu_exp = allocate_unique_buffer(*pool); memcpy(pdu_exp->msg, pdu1, PDU1_LEN); pdu_exp->N_bytes = PDU1_LEN; // Run test pdcp.write_sdu(std::move(sdu), true); const srslte::unique_byte_buffer_t& pdu_act = rlc.get_last_pdcp_pdu(); TESTASSERT(pdu_act->N_bytes == pdu_exp->N_bytes); for (uint32_t i = 0; i < pdu_exp->N_bytes; ++i) { TESTASSERT(pdu_act->msg[i] == pdu_exp->msg[i]); } return 0; } /* * Test 2: PDCP Entity RX * Configure PDCP entity with EIA2 and EEA2 * TX_NEXT initially at 0. * Input: {0x80, 0x00, 0x8f, 0xe3, 0xe0, 0xdf 0x82, 0x92} * Output: {0x18, 0xE2} */ bool test_rx_basic(srslte::byte_buffer_pool* pool, srslte::log* log) { srslte::pdcp_entity_nr pdcp; srslte::srslte_pdcp_config_t cfg = {1, srslte::PDCP_RB_IS_DRB, SECURITY_DIRECTION_UPLINK, srslte::PDCP_SN_LEN_12}; rlc_dummy rlc(log); rrc_dummy rrc(log); gw_dummy gw(log); pdcp.init(&rlc, &rrc, &gw, log, 0, cfg); pdcp.config_security(k_enc, k_int, k_enc, k_int, srslte::CIPHERING_ALGORITHM_ID_128_EEA2, srslte::INTEGRITY_ALGORITHM_ID_128_EIA2); pdcp.enable_integrity(); pdcp.enable_encryption(); uint8_t mac_exp[4]; srslte::unique_byte_buffer_t pdu = allocate_unique_buffer(*pool); srslte::unique_byte_buffer_t sdu_exp = allocate_unique_buffer(*pool); memcpy(pdu->msg, pdu1, PDU1_LEN); pdu->N_bytes = PDU1_LEN; sdu_exp->N_bytes = SDU1_LEN; pdcp.write_pdu(std::move(pdu)); return 0; } // Setup all tests int run_all_tests(srslte::byte_buffer_pool* pool) { // Setup log srslte::log_filter log("PDCP NR Test"); log.set_level(srslte::LOG_LEVEL_DEBUG); log.set_hex_limit(128); TESTASSERT(test_tx_basic(pool, &log) == 0); TESTASSERT(test_rx_basic(pool, &log) == 0); return 0; } int main(int argc, char** argv) { run_all_tests(srslte::byte_buffer_pool::get_instance()); srslte::byte_buffer_pool::cleanup(); }