/** * * \section COPYRIGHT * * Copyright 2013-2014 The libLTE Developers. See the * COPYRIGHT file at the top-level directory of this distribution. * * \section LICENSE * * This file is part of the libLTE library. * * libLTE is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as * published by the Free Software Foundation, either version 3 of * the License, or (at your option) any later version. * * libLTE is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * A copy of the GNU Lesser General Public License can be found in * the LICENSE file in the top-level directory of this distribution * and at http://www.gnu.org/licenses/. * */ #include #include #include #include #include #include "cuhd_handler.hpp" #include "liblte/cuhd/cuhd.h" //#define METADATA_VERBOSE void my_handler(uhd::msg::type_t type, const std::string & msg) { //handle the message... } typedef _Complex float complex_t; #define SAMPLE_SZ sizeof(complex_t) bool isLocked(void *h) { cuhd_handler *handler = static_cast < cuhd_handler * >(h); std::vector < std::string > mb_sensors = handler->usrp->get_mboard_sensor_names(); std::vector < std::string > rx_sensors = handler->usrp->get_rx_sensor_names(0); if (std::find(rx_sensors.begin(), rx_sensors.end(), "lo_locked") != rx_sensors.end()) { return handler->usrp->get_rx_sensor("lo_locked", 0).to_bool(); } else if (std::find(mb_sensors.begin(), mb_sensors.end(), "ref_locked") != mb_sensors.end()) { return handler->usrp->get_mboard_sensor("ref_locked", 0).to_bool(); } else { usleep(500); return true; } } bool cuhd_rx_wait_lo_locked(void *h) { double report = 0.0; while (isLocked(h) && report < 3.0) { report += 0.1; usleep(1000); } return isLocked(h); } int cuhd_start_rx_stream(void *h) { cuhd_handler *handler = static_cast < cuhd_handler * >(h); uhd::stream_cmd_t cmd(uhd::stream_cmd_t::STREAM_MODE_START_CONTINUOUS); cmd.time_spec = handler->usrp->get_time_now(); cmd.stream_now = true; handler->usrp->issue_stream_cmd(cmd); return 0; } int cuhd_stop_rx_stream(void *h) { cuhd_handler *handler = static_cast < cuhd_handler * >(h); uhd::stream_cmd_t cmd(uhd::stream_cmd_t::STREAM_MODE_STOP_CONTINUOUS); cmd.time_spec = handler->usrp->get_time_now(); cmd.stream_now = true; handler->usrp->issue_stream_cmd(cmd); return 0; } int cuhd_start_rx_stream_nsamples(void *h, uint32_t nsamples) { cuhd_handler *handler = static_cast < cuhd_handler * >(h); uhd::stream_cmd_t cmd(uhd::stream_cmd_t::STREAM_MODE_NUM_SAMPS_AND_MORE); cmd.time_spec = handler->usrp->get_time_now(); cmd.stream_now = true; cmd.num_samps = nsamples; handler->usrp->issue_stream_cmd(cmd); return 0; } int cuhd_open(char *args, void **h) { cuhd_handler *handler = new cuhd_handler(); std::string _args = std::string(args); handler->usrp = uhd::usrp::multi_usrp::make(_args + ", master_clock_rate=30720000" + ", num_recv_frames=512"); handler->usrp->set_clock_source("internal"); std::string otw, cpu; otw = "sc16"; cpu = "fc32"; uhd::stream_args_t stream_args(cpu, otw); handler->rx_stream = handler->usrp->get_rx_stream(stream_args); handler->tx_stream = handler->usrp->get_tx_stream(stream_args); *h = handler; return 0; } int cuhd_close(void *h) { cuhd_stop_rx_stream(h); /** Something else to close the USRP?? */ return 0; } double cuhd_set_rx_srate(void *h, double freq) { cuhd_handler *handler = static_cast < cuhd_handler * >(h); handler->usrp->set_rx_rate(freq); double ret = handler->usrp->get_rx_rate(); return ret; } double cuhd_set_rx_gain(void *h, double gain) { cuhd_handler *handler = static_cast < cuhd_handler * >(h); handler->usrp->set_rx_gain(gain); return handler->usrp->get_rx_gain(); } double cuhd_set_rx_freq(void *h, double freq) { cuhd_handler *handler = static_cast < cuhd_handler * >(h); handler->usrp->set_rx_freq(freq); return handler->usrp->get_rx_freq(); } double cuhd_set_rx_freq_offset(void *h, double freq, double off) { cuhd_handler* handler = static_cast(h); handler->usrp->set_rx_freq(uhd::tune_request_t(freq,off)); return handler->usrp->get_rx_freq(); } int cuhd_recv(void *h, void *data, uint32_t nsamples, bool blocking) { cuhd_handler *handler = static_cast < cuhd_handler * >(h); uhd::rx_metadata_t md; if (blocking) { int n = 0, p; complex_t *data_c = (complex_t *) data; do { p = handler->rx_stream->recv(&data_c[n], nsamples - n, md); if (p == -1) { return -1; } n += p; #ifdef METADATA_VERBOSE if (md.error_code != uhd::rx_metadata_t::ERROR_CODE_NONE) { std::cout << "\nError code: " << md.to_pp_string() << "\n\n"; } #endif } while (n < nsamples); return nsamples; } else { return handler->rx_stream->recv(data, nsamples, md, 0.0); } } int cuhd_recv_timed(void *h, void *data, uint32_t nsamples, int blocking, time_t *secs, double *frac_secs) { cuhd_handler* handler = static_cast(h); uhd::rx_metadata_t md; *secs = -1; *frac_secs = -1; int p; if (blocking) { int n=0; complex_t *data_c = (complex_t*) data; do { p=handler->rx_stream->recv(&data_c[n], nsamples-n, md); if (p == -1) { return -1; } if(*secs < 0){ *secs = md.time_spec.get_full_secs(); *frac_secs = md.time_spec.get_frac_secs(); } n+=p; } while(nrx_stream->recv(data, nsamples, md, 0.0); *secs = md.time_spec.get_full_secs(); *frac_secs = md.time_spec.get_frac_secs(); return p; } } double cuhd_set_tx_gain(void *h, double gain) { cuhd_handler *handler = static_cast < cuhd_handler * >(h); handler->usrp->set_tx_gain(gain); return handler->usrp->get_tx_gain(); } double cuhd_set_tx_srate(void *h, double freq) { cuhd_handler *handler = static_cast < cuhd_handler * >(h); handler->usrp->set_tx_rate(freq); return handler->usrp->get_tx_rate(); } double cuhd_set_tx_freq(void *h, double freq) { cuhd_handler *handler = static_cast < cuhd_handler * >(h); handler->usrp->set_tx_freq(freq); return handler->usrp->get_tx_freq(); } int cuhd_send(void *h, void *data, uint32_t nsamples, bool blocking) { cuhd_handler *handler = static_cast < cuhd_handler * >(h); uhd::tx_metadata_t md; if (blocking) { int n = 0, p; complex_t *data_c = (complex_t *) data; do { p = handler->tx_stream->send(&data_c[n], nsamples - n, md); if (p == -1) { return -1; } n += p; } while (n < nsamples); return nsamples; } else { return handler->tx_stream->send(data, nsamples, md, 0.0); } }