// Formatting library for C++ - implementation // // Copyright (c) 2012 - 2016, Victor Zverovich // All rights reserved. // // For the license information refer to format.h. #ifndef FMT_FORMAT_INL_H_ #define FMT_FORMAT_INL_H_ #include #include #include #include #include #include // for std::memmove #include #include #include "format.h" #if !defined(FMT_STATIC_THOUSANDS_SEPARATOR) # include #endif #ifdef _WIN32 # if !defined(NOMINMAX) && !defined(WIN32_LEAN_AND_MEAN) # define NOMINMAX # define WIN32_LEAN_AND_MEAN # include # undef WIN32_LEAN_AND_MEAN # undef NOMINMAX # else # include # endif # include #endif #ifdef _MSC_VER # pragma warning(push) # pragma warning(disable : 4702) // unreachable code #endif // Dummy implementations of strerror_r and strerror_s called if corresponding // system functions are not available. inline fmt::detail::null<> strerror_r(int, char*, ...) { return {}; } inline fmt::detail::null<> strerror_s(char*, size_t, ...) { return {}; } FMT_BEGIN_NAMESPACE namespace detail { FMT_FUNC void assert_fail(const char* file, int line, const char* message) { // Use unchecked std::fprintf to avoid triggering another assertion when // writing to stderr fails std::fprintf(stderr, "%s:%d: assertion failed: %s", file, line, message); // Chosen instead of std::abort to satisfy Clang in CUDA mode during device // code pass. std::terminate(); } #ifndef _MSC_VER # define FMT_SNPRINTF snprintf #else // _MSC_VER inline int fmt_snprintf(char* buffer, size_t size, const char* format, ...) { va_list args; va_start(args, format); int result = vsnprintf_s(buffer, size, _TRUNCATE, format, args); va_end(args); return result; } # define FMT_SNPRINTF fmt_snprintf #endif // _MSC_VER // A portable thread-safe version of strerror. // Sets buffer to point to a string describing the error code. // This can be either a pointer to a string stored in buffer, // or a pointer to some static immutable string. // Returns one of the following values: // 0 - success // ERANGE - buffer is not large enough to store the error message // other - failure // Buffer should be at least of size 1. FMT_FUNC int safe_strerror(int error_code, char*& buffer, size_t buffer_size) FMT_NOEXCEPT { FMT_ASSERT(buffer != nullptr && buffer_size != 0, "invalid buffer"); class dispatcher { private: int error_code_; char*& buffer_; size_t buffer_size_; // A noop assignment operator to avoid bogus warnings. void operator=(const dispatcher&) {} // Handle the result of XSI-compliant version of strerror_r. int handle(int result) { // glibc versions before 2.13 return result in errno. return result == -1 ? errno : result; } // Handle the result of GNU-specific version of strerror_r. FMT_MAYBE_UNUSED int handle(char* message) { // If the buffer is full then the message is probably truncated. if (message == buffer_ && strlen(buffer_) == buffer_size_ - 1) return ERANGE; buffer_ = message; return 0; } // Handle the case when strerror_r is not available. FMT_MAYBE_UNUSED int handle(detail::null<>) { return fallback(strerror_s(buffer_, buffer_size_, error_code_)); } // Fallback to strerror_s when strerror_r is not available. FMT_MAYBE_UNUSED int fallback(int result) { // If the buffer is full then the message is probably truncated. return result == 0 && strlen(buffer_) == buffer_size_ - 1 ? ERANGE : result; } #if !FMT_MSC_VER // Fallback to strerror if strerror_r and strerror_s are not available. int fallback(detail::null<>) { errno = 0; buffer_ = strerror(error_code_); return errno; } #endif public: dispatcher(int err_code, char*& buf, size_t buf_size) : error_code_(err_code), buffer_(buf), buffer_size_(buf_size) {} int run() { return handle(strerror_r(error_code_, buffer_, buffer_size_)); } }; return dispatcher(error_code, buffer, buffer_size).run(); } FMT_FUNC void format_error_code(detail::buffer& out, int error_code, string_view message) FMT_NOEXCEPT { // Report error code making sure that the output fits into // inline_buffer_size to avoid dynamic memory allocation and potential // bad_alloc. out.resize(0); static const char SEP[] = ": "; static const char ERROR_STR[] = "error "; // Subtract 2 to account for terminating null characters in SEP and ERROR_STR. size_t error_code_size = sizeof(SEP) + sizeof(ERROR_STR) - 2; auto abs_value = static_cast>(error_code); if (detail::is_negative(error_code)) { abs_value = 0 - abs_value; ++error_code_size; } error_code_size += detail::to_unsigned(detail::count_digits(abs_value)); auto it = std::back_inserter(out); if (message.size() <= inline_buffer_size - error_code_size) format_to(it, "{}{}", message, SEP); format_to(it, "{}{}", ERROR_STR, error_code); assert(out.size() <= inline_buffer_size); } FMT_FUNC void report_error(format_func func, int error_code, string_view message) FMT_NOEXCEPT { memory_buffer full_message; func(full_message, error_code, message); // Don't use fwrite_fully because the latter may throw. (void)std::fwrite(full_message.data(), full_message.size(), 1, stderr); std::fputc('\n', stderr); } // A wrapper around fwrite that throws on error. FMT_FUNC void fwrite_fully(const void* ptr, size_t size, size_t count, FILE* stream) { size_t written = std::fwrite(ptr, size, count, stream); if (written < count) FMT_THROW(system_error(errno, "cannot write to file")); } } // namespace detail #if !defined(FMT_STATIC_THOUSANDS_SEPARATOR) namespace detail { template locale_ref::locale_ref(const Locale& loc) : locale_(&loc) { static_assert(std::is_same::value, ""); } template Locale locale_ref::get() const { static_assert(std::is_same::value, ""); return locale_ ? *static_cast(locale_) : std::locale(); } template FMT_FUNC std::string grouping_impl(locale_ref loc) { return std::use_facet>(loc.get()).grouping(); } template FMT_FUNC Char thousands_sep_impl(locale_ref loc) { return std::use_facet>(loc.get()) .thousands_sep(); } template FMT_FUNC Char decimal_point_impl(locale_ref loc) { return std::use_facet>(loc.get()) .decimal_point(); } } // namespace detail #else template FMT_FUNC std::string detail::grouping_impl(locale_ref) { return "\03"; } template FMT_FUNC Char detail::thousands_sep_impl(locale_ref) { return FMT_STATIC_THOUSANDS_SEPARATOR; } template FMT_FUNC Char detail::decimal_point_impl(locale_ref) { return '.'; } #endif FMT_API FMT_FUNC format_error::~format_error() FMT_NOEXCEPT = default; FMT_API FMT_FUNC system_error::~system_error() FMT_NOEXCEPT = default; FMT_FUNC void system_error::init(int err_code, string_view format_str, format_args args) { error_code_ = err_code; memory_buffer buffer; format_system_error(buffer, err_code, vformat(format_str, args)); std::runtime_error& base = *this; base = std::runtime_error(to_string(buffer)); } namespace detail { template <> FMT_FUNC int count_digits<4>(detail::fallback_uintptr n) { // fallback_uintptr is always stored in little endian. int i = static_cast(sizeof(void*)) - 1; while (i > 0 && n.value[i] == 0) --i; auto char_digits = std::numeric_limits::digits / 4; return i >= 0 ? i * char_digits + count_digits<4, unsigned>(n.value[i]) : 1; } template const typename basic_data::digit_pair basic_data::digits[] = { {'0', '0'}, {'0', '1'}, {'0', '2'}, {'0', '3'}, {'0', '4'}, {'0', '5'}, {'0', '6'}, {'0', '7'}, {'0', '8'}, {'0', '9'}, {'1', '0'}, {'1', '1'}, {'1', '2'}, {'1', '3'}, {'1', '4'}, {'1', '5'}, {'1', '6'}, {'1', '7'}, {'1', '8'}, {'1', '9'}, {'2', '0'}, {'2', '1'}, {'2', '2'}, {'2', '3'}, {'2', '4'}, {'2', '5'}, {'2', '6'}, {'2', '7'}, {'2', '8'}, {'2', '9'}, {'3', '0'}, {'3', '1'}, {'3', '2'}, {'3', '3'}, {'3', '4'}, {'3', '5'}, {'3', '6'}, {'3', '7'}, {'3', '8'}, {'3', '9'}, {'4', '0'}, {'4', '1'}, {'4', '2'}, {'4', '3'}, {'4', '4'}, {'4', '5'}, {'4', '6'}, {'4', '7'}, {'4', '8'}, {'4', '9'}, {'5', '0'}, {'5', '1'}, {'5', '2'}, {'5', '3'}, {'5', '4'}, {'5', '5'}, {'5', '6'}, {'5', '7'}, {'5', '8'}, {'5', '9'}, {'6', '0'}, {'6', '1'}, {'6', '2'}, {'6', '3'}, {'6', '4'}, {'6', '5'}, {'6', '6'}, {'6', '7'}, {'6', '8'}, {'6', '9'}, {'7', '0'}, {'7', '1'}, {'7', '2'}, {'7', '3'}, {'7', '4'}, {'7', '5'}, {'7', '6'}, {'7', '7'}, {'7', '8'}, {'7', '9'}, {'8', '0'}, {'8', '1'}, {'8', '2'}, {'8', '3'}, {'8', '4'}, {'8', '5'}, {'8', '6'}, {'8', '7'}, {'8', '8'}, {'8', '9'}, {'9', '0'}, {'9', '1'}, {'9', '2'}, {'9', '3'}, {'9', '4'}, {'9', '5'}, {'9', '6'}, {'9', '7'}, {'9', '8'}, {'9', '9'}}; template const char basic_data::hex_digits[] = "0123456789abcdef"; #define FMT_POWERS_OF_10(factor) \ factor * 10, (factor)*100, (factor)*1000, (factor)*10000, (factor)*100000, \ (factor)*1000000, (factor)*10000000, (factor)*100000000, \ (factor)*1000000000 template const uint64_t basic_data::powers_of_10_64[] = { 1, FMT_POWERS_OF_10(1), FMT_POWERS_OF_10(1000000000ULL), 10000000000000000000ULL}; template const uint32_t basic_data::zero_or_powers_of_10_32[] = {0, FMT_POWERS_OF_10(1)}; template const uint64_t basic_data::zero_or_powers_of_10_64[] = { 0, FMT_POWERS_OF_10(1), FMT_POWERS_OF_10(1000000000ULL), 10000000000000000000ULL}; // Normalized 64-bit significands of pow(10, k), for k = -348, -340, ..., 340. // These are generated by support/compute-powers.py. template const uint64_t basic_data::pow10_significands[] = { 0xfa8fd5a0081c0288, 0xbaaee17fa23ebf76, 0x8b16fb203055ac76, 0xcf42894a5dce35ea, 0x9a6bb0aa55653b2d, 0xe61acf033d1a45df, 0xab70fe17c79ac6ca, 0xff77b1fcbebcdc4f, 0xbe5691ef416bd60c, 0x8dd01fad907ffc3c, 0xd3515c2831559a83, 0x9d71ac8fada6c9b5, 0xea9c227723ee8bcb, 0xaecc49914078536d, 0x823c12795db6ce57, 0xc21094364dfb5637, 0x9096ea6f3848984f, 0xd77485cb25823ac7, 0xa086cfcd97bf97f4, 0xef340a98172aace5, 0xb23867fb2a35b28e, 0x84c8d4dfd2c63f3b, 0xc5dd44271ad3cdba, 0x936b9fcebb25c996, 0xdbac6c247d62a584, 0xa3ab66580d5fdaf6, 0xf3e2f893dec3f126, 0xb5b5ada8aaff80b8, 0x87625f056c7c4a8b, 0xc9bcff6034c13053, 0x964e858c91ba2655, 0xdff9772470297ebd, 0xa6dfbd9fb8e5b88f, 0xf8a95fcf88747d94, 0xb94470938fa89bcf, 0x8a08f0f8bf0f156b, 0xcdb02555653131b6, 0x993fe2c6d07b7fac, 0xe45c10c42a2b3b06, 0xaa242499697392d3, 0xfd87b5f28300ca0e, 0xbce5086492111aeb, 0x8cbccc096f5088cc, 0xd1b71758e219652c, 0x9c40000000000000, 0xe8d4a51000000000, 0xad78ebc5ac620000, 0x813f3978f8940984, 0xc097ce7bc90715b3, 0x8f7e32ce7bea5c70, 0xd5d238a4abe98068, 0x9f4f2726179a2245, 0xed63a231d4c4fb27, 0xb0de65388cc8ada8, 0x83c7088e1aab65db, 0xc45d1df942711d9a, 0x924d692ca61be758, 0xda01ee641a708dea, 0xa26da3999aef774a, 0xf209787bb47d6b85, 0xb454e4a179dd1877, 0x865b86925b9bc5c2, 0xc83553c5c8965d3d, 0x952ab45cfa97a0b3, 0xde469fbd99a05fe3, 0xa59bc234db398c25, 0xf6c69a72a3989f5c, 0xb7dcbf5354e9bece, 0x88fcf317f22241e2, 0xcc20ce9bd35c78a5, 0x98165af37b2153df, 0xe2a0b5dc971f303a, 0xa8d9d1535ce3b396, 0xfb9b7cd9a4a7443c, 0xbb764c4ca7a44410, 0x8bab8eefb6409c1a, 0xd01fef10a657842c, 0x9b10a4e5e9913129, 0xe7109bfba19c0c9d, 0xac2820d9623bf429, 0x80444b5e7aa7cf85, 0xbf21e44003acdd2d, 0x8e679c2f5e44ff8f, 0xd433179d9c8cb841, 0x9e19db92b4e31ba9, 0xeb96bf6ebadf77d9, 0xaf87023b9bf0ee6b, }; // Binary exponents of pow(10, k), for k = -348, -340, ..., 340, corresponding // to significands above. template const int16_t basic_data::pow10_exponents[] = { -1220, -1193, -1166, -1140, -1113, -1087, -1060, -1034, -1007, -980, -954, -927, -901, -874, -847, -821, -794, -768, -741, -715, -688, -661, -635, -608, -582, -555, -529, -502, -475, -449, -422, -396, -369, -343, -316, -289, -263, -236, -210, -183, -157, -130, -103, -77, -50, -24, 3, 30, 56, 83, 109, 136, 162, 189, 216, 242, 269, 295, 322, 348, 375, 402, 428, 455, 481, 508, 534, 561, 588, 614, 641, 667, 694, 720, 747, 774, 800, 827, 853, 880, 907, 933, 960, 986, 1013, 1039, 1066}; template const char basic_data::foreground_color[] = "\x1b[38;2;"; template const char basic_data::background_color[] = "\x1b[48;2;"; template const char basic_data::reset_color[] = "\x1b[0m"; template const wchar_t basic_data::wreset_color[] = L"\x1b[0m"; template const char basic_data::signs[] = {0, '-', '+', ' '}; template const char basic_data::left_padding_shifts[] = {31, 31, 0, 1, 0}; template const char basic_data::right_padding_shifts[] = {0, 31, 0, 1, 0}; template struct bits { static FMT_CONSTEXPR_DECL const int value = static_cast(sizeof(T) * std::numeric_limits::digits); }; class fp; template fp normalize(fp value); // Lower (upper) boundary is a value half way between a floating-point value // and its predecessor (successor). Boundaries have the same exponent as the // value so only significands are stored. struct boundaries { uint64_t lower; uint64_t upper; }; // A handmade floating-point number f * pow(2, e). class fp { private: using significand_type = uint64_t; public: significand_type f; int e; // All sizes are in bits. // Subtract 1 to account for an implicit most significant bit in the // normalized form. static FMT_CONSTEXPR_DECL const int double_significand_size = std::numeric_limits::digits - 1; static FMT_CONSTEXPR_DECL const uint64_t implicit_bit = 1ULL << double_significand_size; static FMT_CONSTEXPR_DECL const int significand_size = bits::value; fp() : f(0), e(0) {} fp(uint64_t f_val, int e_val) : f(f_val), e(e_val) {} // Constructs fp from an IEEE754 double. It is a template to prevent compile // errors on platforms where double is not IEEE754. template explicit fp(Double d) { assign(d); } // Assigns d to this and return true iff predecessor is closer than successor. template bool assign(Double d) { // Assume double is in the format [sign][exponent][significand]. using limits = std::numeric_limits; const int exponent_size = bits::value - double_significand_size - 1; // -1 for sign const uint64_t significand_mask = implicit_bit - 1; const uint64_t exponent_mask = (~0ULL >> 1) & ~significand_mask; const int exponent_bias = (1 << exponent_size) - limits::max_exponent - 1; auto u = bit_cast(d); f = u & significand_mask; int biased_e = static_cast((u & exponent_mask) >> double_significand_size); // Predecessor is closer if d is a normalized power of 2 (f == 0) other than // the smallest normalized number (biased_e > 1). bool is_predecessor_closer = f == 0 && biased_e > 1; if (biased_e != 0) f += implicit_bit; else biased_e = 1; // Subnormals use biased exponent 1 (min exponent). e = biased_e - exponent_bias - double_significand_size; return is_predecessor_closer; } template bool assign(Double) { *this = fp(); return false; } // Assigns d to this together with computing lower and upper boundaries, // where a boundary is a value half way between the number and its predecessor // (lower) or successor (upper). The upper boundary is normalized and lower // has the same exponent but may be not normalized. template boundaries assign_with_boundaries(Double d) { bool is_lower_closer = assign(d); fp lower = is_lower_closer ? fp((f << 2) - 1, e - 2) : fp((f << 1) - 1, e - 1); // 1 in normalize accounts for the exponent shift above. fp upper = normalize<1>(fp((f << 1) + 1, e - 1)); lower.f <<= lower.e - upper.e; return boundaries{lower.f, upper.f}; } template boundaries assign_float_with_boundaries(Double d) { assign(d); constexpr int min_normal_e = std::numeric_limits::min_exponent - std::numeric_limits::digits; significand_type half_ulp = 1 << (std::numeric_limits::digits - std::numeric_limits::digits - 1); if (min_normal_e > e) half_ulp <<= min_normal_e - e; fp upper = normalize<0>(fp(f + half_ulp, e)); fp lower = fp( f - (half_ulp >> ((f == implicit_bit && e > min_normal_e) ? 1 : 0)), e); lower.f <<= lower.e - upper.e; return boundaries{lower.f, upper.f}; } }; // Normalizes the value converted from double and multiplied by (1 << SHIFT). template fp normalize(fp value) { // Handle subnormals. const auto shifted_implicit_bit = fp::implicit_bit << SHIFT; while ((value.f & shifted_implicit_bit) == 0) { value.f <<= 1; --value.e; } // Subtract 1 to account for hidden bit. const auto offset = fp::significand_size - fp::double_significand_size - SHIFT - 1; value.f <<= offset; value.e -= offset; return value; } inline bool operator==(fp x, fp y) { return x.f == y.f && x.e == y.e; } // Computes lhs * rhs / pow(2, 64) rounded to nearest with half-up tie breaking. inline uint64_t multiply(uint64_t lhs, uint64_t rhs) { #if FMT_USE_INT128 auto product = static_cast<__uint128_t>(lhs) * rhs; auto f = static_cast(product >> 64); return (static_cast(product) & (1ULL << 63)) != 0 ? f + 1 : f; #else // Multiply 32-bit parts of significands. uint64_t mask = (1ULL << 32) - 1; uint64_t a = lhs >> 32, b = lhs & mask; uint64_t c = rhs >> 32, d = rhs & mask; uint64_t ac = a * c, bc = b * c, ad = a * d, bd = b * d; // Compute mid 64-bit of result and round. uint64_t mid = (bd >> 32) + (ad & mask) + (bc & mask) + (1U << 31); return ac + (ad >> 32) + (bc >> 32) + (mid >> 32); #endif } inline fp operator*(fp x, fp y) { return {multiply(x.f, y.f), x.e + y.e + 64}; } // Returns a cached power of 10 `c_k = c_k.f * pow(2, c_k.e)` such that its // (binary) exponent satisfies `min_exponent <= c_k.e <= min_exponent + 28`. inline fp get_cached_power(int min_exponent, int& pow10_exponent) { const int64_t one_over_log2_10 = 0x4d104d42; // round(pow(2, 32) / log2(10)) int index = static_cast( ((min_exponent + fp::significand_size - 1) * one_over_log2_10 + ((int64_t(1) << 32) - 1)) // ceil >> 32 // arithmetic shift ); // Decimal exponent of the first (smallest) cached power of 10. const int first_dec_exp = -348; // Difference between 2 consecutive decimal exponents in cached powers of 10. const int dec_exp_step = 8; index = (index - first_dec_exp - 1) / dec_exp_step + 1; pow10_exponent = first_dec_exp + index * dec_exp_step; return {data::pow10_significands[index], data::pow10_exponents[index]}; } // A simple accumulator to hold the sums of terms in bigint::square if uint128_t // is not available. struct accumulator { uint64_t lower; uint64_t upper; accumulator() : lower(0), upper(0) {} explicit operator uint32_t() const { return static_cast(lower); } void operator+=(uint64_t n) { lower += n; if (lower < n) ++upper; } void operator>>=(int shift) { assert(shift == 32); (void)shift; lower = (upper << 32) | (lower >> 32); upper >>= 32; } }; class bigint { private: // A bigint is stored as an array of bigits (big digits), with bigit at index // 0 being the least significant one. using bigit = uint32_t; using double_bigit = uint64_t; enum { bigits_capacity = 32 }; basic_memory_buffer bigits_; int exp_; bigit operator[](int index) const { return bigits_[to_unsigned(index)]; } bigit& operator[](int index) { return bigits_[to_unsigned(index)]; } static FMT_CONSTEXPR_DECL const int bigit_bits = bits::value; friend struct formatter; void subtract_bigits(int index, bigit other, bigit& borrow) { auto result = static_cast((*this)[index]) - other - borrow; (*this)[index] = static_cast(result); borrow = static_cast(result >> (bigit_bits * 2 - 1)); } void remove_leading_zeros() { int num_bigits = static_cast(bigits_.size()) - 1; while (num_bigits > 0 && (*this)[num_bigits] == 0) --num_bigits; bigits_.resize(to_unsigned(num_bigits + 1)); } // Computes *this -= other assuming aligned bigints and *this >= other. void subtract_aligned(const bigint& other) { FMT_ASSERT(other.exp_ >= exp_, "unaligned bigints"); FMT_ASSERT(compare(*this, other) >= 0, ""); bigit borrow = 0; int i = other.exp_ - exp_; for (size_t j = 0, n = other.bigits_.size(); j != n; ++i, ++j) { subtract_bigits(i, other.bigits_[j], borrow); } while (borrow > 0) subtract_bigits(i, 0, borrow); remove_leading_zeros(); } void multiply(uint32_t value) { const double_bigit wide_value = value; bigit carry = 0; for (size_t i = 0, n = bigits_.size(); i < n; ++i) { double_bigit result = bigits_[i] * wide_value + carry; bigits_[i] = static_cast(result); carry = static_cast(result >> bigit_bits); } if (carry != 0) bigits_.push_back(carry); } void multiply(uint64_t value) { const bigit mask = ~bigit(0); const double_bigit lower = value & mask; const double_bigit upper = value >> bigit_bits; double_bigit carry = 0; for (size_t i = 0, n = bigits_.size(); i < n; ++i) { double_bigit result = bigits_[i] * lower + (carry & mask); carry = bigits_[i] * upper + (result >> bigit_bits) + (carry >> bigit_bits); bigits_[i] = static_cast(result); } while (carry != 0) { bigits_.push_back(carry & mask); carry >>= bigit_bits; } } public: bigint() : exp_(0) {} explicit bigint(uint64_t n) { assign(n); } ~bigint() { assert(bigits_.capacity() <= bigits_capacity); } bigint(const bigint&) = delete; void operator=(const bigint&) = delete; void assign(const bigint& other) { auto size = other.bigits_.size(); bigits_.resize(size); auto data = other.bigits_.data(); std::copy(data, data + size, make_checked(bigits_.data(), size)); exp_ = other.exp_; } void assign(uint64_t n) { size_t num_bigits = 0; do { bigits_[num_bigits++] = n & ~bigit(0); n >>= bigit_bits; } while (n != 0); bigits_.resize(num_bigits); exp_ = 0; } int num_bigits() const { return static_cast(bigits_.size()) + exp_; } FMT_NOINLINE bigint& operator<<=(int shift) { assert(shift >= 0); exp_ += shift / bigit_bits; shift %= bigit_bits; if (shift == 0) return *this; bigit carry = 0; for (size_t i = 0, n = bigits_.size(); i < n; ++i) { bigit c = bigits_[i] >> (bigit_bits - shift); bigits_[i] = (bigits_[i] << shift) + carry; carry = c; } if (carry != 0) bigits_.push_back(carry); return *this; } template bigint& operator*=(Int value) { FMT_ASSERT(value > 0, ""); multiply(uint32_or_64_or_128_t(value)); return *this; } friend int compare(const bigint& lhs, const bigint& rhs) { int num_lhs_bigits = lhs.num_bigits(), num_rhs_bigits = rhs.num_bigits(); if (num_lhs_bigits != num_rhs_bigits) return num_lhs_bigits > num_rhs_bigits ? 1 : -1; int i = static_cast(lhs.bigits_.size()) - 1; int j = static_cast(rhs.bigits_.size()) - 1; int end = i - j; if (end < 0) end = 0; for (; i >= end; --i, --j) { bigit lhs_bigit = lhs[i], rhs_bigit = rhs[j]; if (lhs_bigit != rhs_bigit) return lhs_bigit > rhs_bigit ? 1 : -1; } if (i != j) return i > j ? 1 : -1; return 0; } // Returns compare(lhs1 + lhs2, rhs). friend int add_compare(const bigint& lhs1, const bigint& lhs2, const bigint& rhs) { int max_lhs_bigits = (std::max)(lhs1.num_bigits(), lhs2.num_bigits()); int num_rhs_bigits = rhs.num_bigits(); if (max_lhs_bigits + 1 < num_rhs_bigits) return -1; if (max_lhs_bigits > num_rhs_bigits) return 1; auto get_bigit = [](const bigint& n, int i) -> bigit { return i >= n.exp_ && i < n.num_bigits() ? n[i - n.exp_] : 0; }; double_bigit borrow = 0; int min_exp = (std::min)((std::min)(lhs1.exp_, lhs2.exp_), rhs.exp_); for (int i = num_rhs_bigits - 1; i >= min_exp; --i) { double_bigit sum = static_cast(get_bigit(lhs1, i)) + get_bigit(lhs2, i); bigit rhs_bigit = get_bigit(rhs, i); if (sum > rhs_bigit + borrow) return 1; borrow = rhs_bigit + borrow - sum; if (borrow > 1) return -1; borrow <<= bigit_bits; } return borrow != 0 ? -1 : 0; } // Assigns pow(10, exp) to this bigint. void assign_pow10(int exp) { assert(exp >= 0); if (exp == 0) return assign(1); // Find the top bit. int bitmask = 1; while (exp >= bitmask) bitmask <<= 1; bitmask >>= 1; // pow(10, exp) = pow(5, exp) * pow(2, exp). First compute pow(5, exp) by // repeated squaring and multiplication. assign(5); bitmask >>= 1; while (bitmask != 0) { square(); if ((exp & bitmask) != 0) *this *= 5; bitmask >>= 1; } *this <<= exp; // Multiply by pow(2, exp) by shifting. } void square() { basic_memory_buffer n(std::move(bigits_)); int num_bigits = static_cast(bigits_.size()); int num_result_bigits = 2 * num_bigits; bigits_.resize(to_unsigned(num_result_bigits)); using accumulator_t = conditional_t; auto sum = accumulator_t(); for (int bigit_index = 0; bigit_index < num_bigits; ++bigit_index) { // Compute bigit at position bigit_index of the result by adding // cross-product terms n[i] * n[j] such that i + j == bigit_index. for (int i = 0, j = bigit_index; j >= 0; ++i, --j) { // Most terms are multiplied twice which can be optimized in the future. sum += static_cast(n[i]) * n[j]; } (*this)[bigit_index] = static_cast(sum); sum >>= bits::value; // Compute the carry. } // Do the same for the top half. for (int bigit_index = num_bigits; bigit_index < num_result_bigits; ++bigit_index) { for (int j = num_bigits - 1, i = bigit_index - j; i < num_bigits;) sum += static_cast(n[i++]) * n[j--]; (*this)[bigit_index] = static_cast(sum); sum >>= bits::value; } --num_result_bigits; remove_leading_zeros(); exp_ *= 2; } // Divides this bignum by divisor, assigning the remainder to this and // returning the quotient. int divmod_assign(const bigint& divisor) { FMT_ASSERT(this != &divisor, ""); if (compare(*this, divisor) < 0) return 0; int num_bigits = static_cast(bigits_.size()); FMT_ASSERT(divisor.bigits_[divisor.bigits_.size() - 1u] != 0, ""); int exp_difference = exp_ - divisor.exp_; if (exp_difference > 0) { // Align bigints by adding trailing zeros to simplify subtraction. bigits_.resize(to_unsigned(num_bigits + exp_difference)); for (int i = num_bigits - 1, j = i + exp_difference; i >= 0; --i, --j) bigits_[j] = bigits_[i]; std::uninitialized_fill_n(bigits_.data(), exp_difference, 0); exp_ -= exp_difference; } int quotient = 0; do { subtract_aligned(divisor); ++quotient; } while (compare(*this, divisor) >= 0); return quotient; } }; enum class round_direction { unknown, up, down }; // Given the divisor (normally a power of 10), the remainder = v % divisor for // some number v and the error, returns whether v should be rounded up, down, or // whether the rounding direction can't be determined due to error. // error should be less than divisor / 2. inline round_direction get_round_direction(uint64_t divisor, uint64_t remainder, uint64_t error) { FMT_ASSERT(remainder < divisor, ""); // divisor - remainder won't overflow. FMT_ASSERT(error < divisor, ""); // divisor - error won't overflow. FMT_ASSERT(error < divisor - error, ""); // error * 2 won't overflow. // Round down if (remainder + error) * 2 <= divisor. if (remainder <= divisor - remainder && error * 2 <= divisor - remainder * 2) return round_direction::down; // Round up if (remainder - error) * 2 >= divisor. if (remainder >= error && remainder - error >= divisor - (remainder - error)) { return round_direction::up; } return round_direction::unknown; } namespace digits { enum result { more, // Generate more digits. done, // Done generating digits. error // Digit generation cancelled due to an error. }; } // A version of count_digits optimized for grisu_gen_digits. inline int grisu_count_digits(uint32_t n) { if (n < 10) return 1; if (n < 100) return 2; if (n < 1000) return 3; if (n < 10000) return 4; if (n < 100000) return 5; if (n < 1000000) return 6; if (n < 10000000) return 7; if (n < 100000000) return 8; if (n < 1000000000) return 9; return 10; } // Generates output using the Grisu digit-gen algorithm. // error: the size of the region (lower, upper) outside of which numbers // definitely do not round to value (Delta in Grisu3). template FMT_ALWAYS_INLINE digits::result grisu_gen_digits(fp value, uint64_t error, int& exp, Handler& handler) { const fp one(1ULL << -value.e, value.e); // The integral part of scaled value (p1 in Grisu) = value / one. It cannot be // zero because it contains a product of two 64-bit numbers with MSB set (due // to normalization) - 1, shifted right by at most 60 bits. auto integral = static_cast(value.f >> -one.e); FMT_ASSERT(integral != 0, ""); FMT_ASSERT(integral == value.f >> -one.e, ""); // The fractional part of scaled value (p2 in Grisu) c = value % one. uint64_t fractional = value.f & (one.f - 1); exp = grisu_count_digits(integral); // kappa in Grisu. // Divide by 10 to prevent overflow. auto result = handler.on_start(data::powers_of_10_64[exp - 1] << -one.e, value.f / 10, error * 10, exp); if (result != digits::more) return result; // Generate digits for the integral part. This can produce up to 10 digits. do { uint32_t digit = 0; auto divmod_integral = [&](uint32_t divisor) { digit = integral / divisor; integral %= divisor; }; // This optimization by Milo Yip reduces the number of integer divisions by // one per iteration. switch (exp) { case 10: divmod_integral(1000000000); break; case 9: divmod_integral(100000000); break; case 8: divmod_integral(10000000); break; case 7: divmod_integral(1000000); break; case 6: divmod_integral(100000); break; case 5: divmod_integral(10000); break; case 4: divmod_integral(1000); break; case 3: divmod_integral(100); break; case 2: divmod_integral(10); break; case 1: digit = integral; integral = 0; break; default: FMT_ASSERT(false, "invalid number of digits"); } --exp; uint64_t remainder = (static_cast(integral) << -one.e) + fractional; result = handler.on_digit(static_cast('0' + digit), data::powers_of_10_64[exp] << -one.e, remainder, error, exp, true); if (result != digits::more) return result; } while (exp > 0); // Generate digits for the fractional part. for (;;) { fractional *= 10; error *= 10; char digit = static_cast('0' + static_cast(fractional >> -one.e)); fractional &= one.f - 1; --exp; result = handler.on_digit(digit, one.f, fractional, error, exp, false); if (result != digits::more) return result; } } // The fixed precision digit handler. struct fixed_handler { char* buf; int size; int precision; int exp10; bool fixed; digits::result on_start(uint64_t divisor, uint64_t remainder, uint64_t error, int& exp) { // Non-fixed formats require at least one digit and no precision adjustment. if (!fixed) return digits::more; // Adjust fixed precision by exponent because it is relative to decimal // point. precision += exp + exp10; // Check if precision is satisfied just by leading zeros, e.g. // format("{:.2f}", 0.001) gives "0.00" without generating any digits. if (precision > 0) return digits::more; if (precision < 0) return digits::done; auto dir = get_round_direction(divisor, remainder, error); if (dir == round_direction::unknown) return digits::error; buf[size++] = dir == round_direction::up ? '1' : '0'; return digits::done; } digits::result on_digit(char digit, uint64_t divisor, uint64_t remainder, uint64_t error, int, bool integral) { FMT_ASSERT(remainder < divisor, ""); buf[size++] = digit; if (size < precision) return digits::more; if (!integral) { // Check if error * 2 < divisor with overflow prevention. // The check is not needed for the integral part because error = 1 // and divisor > (1 << 32) there. if (error >= divisor || error >= divisor - error) return digits::error; } else { FMT_ASSERT(error == 1 && divisor > 2, ""); } auto dir = get_round_direction(divisor, remainder, error); if (dir != round_direction::up) return dir == round_direction::down ? digits::done : digits::error; ++buf[size - 1]; for (int i = size - 1; i > 0 && buf[i] > '9'; --i) { buf[i] = '0'; ++buf[i - 1]; } if (buf[0] > '9') { buf[0] = '1'; buf[size++] = '0'; } return digits::done; } }; // The shortest representation digit handler. struct grisu_shortest_handler { char* buf; int size; // Distance between scaled value and upper bound (wp_W in Grisu3). uint64_t diff; digits::result on_start(uint64_t, uint64_t, uint64_t, int&) { return digits::more; } // Decrement the generated number approaching value from above. void round(uint64_t d, uint64_t divisor, uint64_t& remainder, uint64_t error) { while ( remainder < d && error - remainder >= divisor && (remainder + divisor < d || d - remainder >= remainder + divisor - d)) { --buf[size - 1]; remainder += divisor; } } // Implements Grisu's round_weed. digits::result on_digit(char digit, uint64_t divisor, uint64_t remainder, uint64_t error, int exp, bool integral) { buf[size++] = digit; if (remainder >= error) return digits::more; uint64_t unit = integral ? 1 : data::powers_of_10_64[-exp]; uint64_t up = (diff - 1) * unit; // wp_Wup round(up, divisor, remainder, error); uint64_t down = (diff + 1) * unit; // wp_Wdown if (remainder < down && error - remainder >= divisor && (remainder + divisor < down || down - remainder > remainder + divisor - down)) { return digits::error; } return 2 * unit <= remainder && remainder <= error - 4 * unit ? digits::done : digits::error; } }; // Formats value using a variation of the Fixed-Precision Positive // Floating-Point Printout ((FPP)^2) algorithm by Steele & White: // https://fmt.dev/p372-steele.pdf. template void fallback_format(Double d, buffer& buf, int& exp10) { bigint numerator; // 2 * R in (FPP)^2. bigint denominator; // 2 * S in (FPP)^2. // lower and upper are differences between value and corresponding boundaries. bigint lower; // (M^- in (FPP)^2). bigint upper_store; // upper's value if different from lower. bigint* upper = nullptr; // (M^+ in (FPP)^2). fp value; // Shift numerator and denominator by an extra bit or two (if lower boundary // is closer) to make lower and upper integers. This eliminates multiplication // by 2 during later computations. // TODO: handle float int shift = value.assign(d) ? 2 : 1; uint64_t significand = value.f << shift; if (value.e >= 0) { numerator.assign(significand); numerator <<= value.e; lower.assign(1); lower <<= value.e; if (shift != 1) { upper_store.assign(1); upper_store <<= value.e + 1; upper = &upper_store; } denominator.assign_pow10(exp10); denominator <<= 1; } else if (exp10 < 0) { numerator.assign_pow10(-exp10); lower.assign(numerator); if (shift != 1) { upper_store.assign(numerator); upper_store <<= 1; upper = &upper_store; } numerator *= significand; denominator.assign(1); denominator <<= shift - value.e; } else { numerator.assign(significand); denominator.assign_pow10(exp10); denominator <<= shift - value.e; lower.assign(1); if (shift != 1) { upper_store.assign(1ULL << 1); upper = &upper_store; } } if (!upper) upper = &lower; // Invariant: value == (numerator / denominator) * pow(10, exp10). bool even = (value.f & 1) == 0; int num_digits = 0; char* data = buf.data(); for (;;) { int digit = numerator.divmod_assign(denominator); bool low = compare(numerator, lower) - even < 0; // numerator <[=] lower. // numerator + upper >[=] pow10: bool high = add_compare(numerator, *upper, denominator) + even > 0; data[num_digits++] = static_cast('0' + digit); if (low || high) { if (!low) { ++data[num_digits - 1]; } else if (high) { int result = add_compare(numerator, numerator, denominator); // Round half to even. if (result > 0 || (result == 0 && (digit % 2) != 0)) ++data[num_digits - 1]; } buf.resize(to_unsigned(num_digits)); exp10 -= num_digits - 1; return; } numerator *= 10; lower *= 10; if (upper != &lower) *upper *= 10; } } // Formats value using the Grisu algorithm // (https://www.cs.tufts.edu/~nr/cs257/archive/florian-loitsch/printf.pdf) // if T is a IEEE754 binary32 or binary64 and snprintf otherwise. template int format_float(T value, int precision, float_specs specs, buffer& buf) { static_assert(!std::is_same::value, ""); FMT_ASSERT(value >= 0, "value is negative"); const bool fixed = specs.format == float_format::fixed; if (value <= 0) { // <= instead of == to silence a warning. if (precision <= 0 || !fixed) { buf.push_back('0'); return 0; } buf.resize(to_unsigned(precision)); std::uninitialized_fill_n(buf.data(), precision, '0'); return -precision; } if (!specs.use_grisu) return snprintf_float(value, precision, specs, buf); int exp = 0; const int min_exp = -60; // alpha in Grisu. int cached_exp10 = 0; // K in Grisu. if (precision < 0) { fp fp_value; auto boundaries = specs.binary32 ? fp_value.assign_float_with_boundaries(value) : fp_value.assign_with_boundaries(value); fp_value = normalize(fp_value); // Find a cached power of 10 such that multiplying value by it will bring // the exponent in the range [min_exp, -32]. const fp cached_pow = get_cached_power( min_exp - (fp_value.e + fp::significand_size), cached_exp10); // Multiply value and boundaries by the cached power of 10. fp_value = fp_value * cached_pow; boundaries.lower = multiply(boundaries.lower, cached_pow.f); boundaries.upper = multiply(boundaries.upper, cached_pow.f); assert(min_exp <= fp_value.e && fp_value.e <= -32); --boundaries.lower; // \tilde{M}^- - 1 ulp -> M^-_{\downarrow}. ++boundaries.upper; // \tilde{M}^+ + 1 ulp -> M^+_{\uparrow}. // Numbers outside of (lower, upper) definitely do not round to value. grisu_shortest_handler handler{buf.data(), 0, boundaries.upper - fp_value.f}; auto result = grisu_gen_digits(fp(boundaries.upper, fp_value.e), boundaries.upper - boundaries.lower, exp, handler); if (result == digits::error) { exp += handler.size - cached_exp10 - 1; fallback_format(value, buf, exp); return exp; } buf.resize(to_unsigned(handler.size)); } else { if (precision > 17) return snprintf_float(value, precision, specs, buf); fp normalized = normalize(fp(value)); const auto cached_pow = get_cached_power( min_exp - (normalized.e + fp::significand_size), cached_exp10); normalized = normalized * cached_pow; fixed_handler handler{buf.data(), 0, precision, -cached_exp10, fixed}; if (grisu_gen_digits(normalized, 1, exp, handler) == digits::error) return snprintf_float(value, precision, specs, buf); int num_digits = handler.size; if (!fixed) { // Remove trailing zeros. while (num_digits > 0 && buf[num_digits - 1] == '0') { --num_digits; ++exp; } } buf.resize(to_unsigned(num_digits)); } return exp - cached_exp10; } template int snprintf_float(T value, int precision, float_specs specs, buffer& buf) { // Buffer capacity must be non-zero, otherwise MSVC's vsnprintf_s will fail. FMT_ASSERT(buf.capacity() > buf.size(), "empty buffer"); static_assert(!std::is_same::value, ""); // Subtract 1 to account for the difference in precision since we use %e for // both general and exponent format. if (specs.format == float_format::general || specs.format == float_format::exp) precision = (precision >= 0 ? precision : 6) - 1; // Build the format string. enum { max_format_size = 7 }; // The longest format is "%#.*Le". char format[max_format_size]; char* format_ptr = format; *format_ptr++ = '%'; if (specs.showpoint && specs.format == float_format::hex) *format_ptr++ = '#'; if (precision >= 0) { *format_ptr++ = '.'; *format_ptr++ = '*'; } if (std::is_same()) *format_ptr++ = 'L'; *format_ptr++ = specs.format != float_format::hex ? (specs.format == float_format::fixed ? 'f' : 'e') : (specs.upper ? 'A' : 'a'); *format_ptr = '\0'; // Format using snprintf. auto offset = buf.size(); for (;;) { auto begin = buf.data() + offset; auto capacity = buf.capacity() - offset; #ifdef FMT_FUZZ if (precision > 100000) throw std::runtime_error( "fuzz mode - avoid large allocation inside snprintf"); #endif // Suppress the warning about a nonliteral format string. // Cannot use auto because of a bug in MinGW (#1532). int (*snprintf_ptr)(char*, size_t, const char*, ...) = FMT_SNPRINTF; int result = precision >= 0 ? snprintf_ptr(begin, capacity, format, precision, value) : snprintf_ptr(begin, capacity, format, value); if (result < 0) { buf.reserve(buf.capacity() + 1); // The buffer will grow exponentially. continue; } auto size = to_unsigned(result); // Size equal to capacity means that the last character was truncated. if (size >= capacity) { buf.reserve(size + offset + 1); // Add 1 for the terminating '\0'. continue; } auto is_digit = [](char c) { return c >= '0' && c <= '9'; }; if (specs.format == float_format::fixed) { if (precision == 0) { buf.resize(size); return 0; } // Find and remove the decimal point. auto end = begin + size, p = end; do { --p; } while (is_digit(*p)); int fraction_size = static_cast(end - p - 1); std::memmove(p, p + 1, to_unsigned(fraction_size)); buf.resize(size - 1); return -fraction_size; } if (specs.format == float_format::hex) { buf.resize(size + offset); return 0; } // Find and parse the exponent. auto end = begin + size, exp_pos = end; do { --exp_pos; } while (*exp_pos != 'e'); char sign = exp_pos[1]; assert(sign == '+' || sign == '-'); int exp = 0; auto p = exp_pos + 2; // Skip 'e' and sign. do { assert(is_digit(*p)); exp = exp * 10 + (*p++ - '0'); } while (p != end); if (sign == '-') exp = -exp; int fraction_size = 0; if (exp_pos != begin + 1) { // Remove trailing zeros. auto fraction_end = exp_pos - 1; while (*fraction_end == '0') --fraction_end; // Move the fractional part left to get rid of the decimal point. fraction_size = static_cast(fraction_end - begin - 1); std::memmove(begin + 1, begin + 2, to_unsigned(fraction_size)); } buf.resize(to_unsigned(fraction_size) + offset + 1); return exp - fraction_size; } } // A public domain branchless UTF-8 decoder by Christopher Wellons: // https://github.com/skeeto/branchless-utf8 /* Decode the next character, c, from buf, reporting errors in e. * * Since this is a branchless decoder, four bytes will be read from the * buffer regardless of the actual length of the next character. This * means the buffer _must_ have at least three bytes of zero padding * following the end of the data stream. * * Errors are reported in e, which will be non-zero if the parsed * character was somehow invalid: invalid byte sequence, non-canonical * encoding, or a surrogate half. * * The function returns a pointer to the next character. When an error * occurs, this pointer will be a guess that depends on the particular * error, but it will always advance at least one byte. */ FMT_FUNC const char* utf8_decode(const char* buf, uint32_t* c, int* e) { static const char lengths[] = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 3, 3, 4, 0}; static const int masks[] = {0x00, 0x7f, 0x1f, 0x0f, 0x07}; static const uint32_t mins[] = {4194304, 0, 128, 2048, 65536}; static const int shiftc[] = {0, 18, 12, 6, 0}; static const int shifte[] = {0, 6, 4, 2, 0}; auto s = reinterpret_cast(buf); int len = lengths[s[0] >> 3]; // Compute the pointer to the next character early so that the next // iteration can start working on the next character. Neither Clang // nor GCC figure out this reordering on their own. const char* next = buf + len + !len; // Assume a four-byte character and load four bytes. Unused bits are // shifted out. *c = uint32_t(s[0] & masks[len]) << 18; *c |= uint32_t(s[1] & 0x3f) << 12; *c |= uint32_t(s[2] & 0x3f) << 6; *c |= uint32_t(s[3] & 0x3f) << 0; *c >>= shiftc[len]; // Accumulate the various error conditions. *e = (*c < mins[len]) << 6; // non-canonical encoding *e |= ((*c >> 11) == 0x1b) << 7; // surrogate half? *e |= (*c > 0x10FFFF) << 8; // out of range? *e |= (s[1] & 0xc0) >> 2; *e |= (s[2] & 0xc0) >> 4; *e |= (s[3]) >> 6; *e ^= 0x2a; // top two bits of each tail byte correct? *e >>= shifte[len]; return next; } } // namespace detail template <> struct formatter { format_parse_context::iterator parse(format_parse_context& ctx) { return ctx.begin(); } format_context::iterator format(const detail::bigint& n, format_context& ctx) { auto out = ctx.out(); bool first = true; for (auto i = n.bigits_.size(); i > 0; --i) { auto value = n.bigits_[i - 1u]; if (first) { out = format_to(out, "{:x}", value); first = false; continue; } out = format_to(out, "{:08x}", value); } if (n.exp_ > 0) out = format_to(out, "p{}", n.exp_ * detail::bigint::bigit_bits); return out; } }; FMT_FUNC detail::utf8_to_utf16::utf8_to_utf16(string_view s) { auto transcode = [this](const char* p) { auto cp = uint32_t(); auto error = 0; p = utf8_decode(p, &cp, &error); if (error != 0) FMT_THROW(std::runtime_error("invalid utf8")); if (cp <= 0xFFFF) { buffer_.push_back(static_cast(cp)); } else { cp -= 0x10000; buffer_.push_back(static_cast(0xD800 + (cp >> 10))); buffer_.push_back(static_cast(0xDC00 + (cp & 0x3FF))); } return p; }; auto p = s.data(); const size_t block_size = 4; // utf8_decode always reads blocks of 4 chars. if (s.size() >= block_size) { for (auto end = p + s.size() - block_size + 1; p < end;) p = transcode(p); } if (auto num_chars_left = s.data() + s.size() - p) { char buf[2 * block_size - 1] = {}; memcpy(buf, p, to_unsigned(num_chars_left)); p = buf; do { p = transcode(p); } while (p - buf < num_chars_left); } buffer_.push_back(0); } FMT_FUNC void format_system_error(detail::buffer& out, int error_code, string_view message) FMT_NOEXCEPT { FMT_TRY { memory_buffer buf; buf.resize(inline_buffer_size); for (;;) { char* system_message = &buf[0]; int result = detail::safe_strerror(error_code, system_message, buf.size()); if (result == 0) { format_to(std::back_inserter(out), "{}: {}", message, system_message); return; } if (result != ERANGE) break; // Can't get error message, report error code instead. buf.resize(buf.size() * 2); } } FMT_CATCH(...) {} format_error_code(out, error_code, message); } FMT_FUNC void detail::error_handler::on_error(const char* message) { FMT_THROW(format_error(message)); } FMT_FUNC void report_system_error(int error_code, fmt::string_view message) FMT_NOEXCEPT { report_error(format_system_error, error_code, message); } struct stringifier { template FMT_INLINE std::string operator()(T value) const { return to_string(value); } std::string operator()(basic_format_arg::handle h) const { memory_buffer buf; detail::buffer& base = buf; format_parse_context parse_ctx({}); format_context format_ctx(std::back_inserter(base), {}, {}); h.format(parse_ctx, format_ctx); return to_string(buf); } }; FMT_FUNC std::string detail::vformat(string_view format_str, format_args args) { if (format_str.size() == 2 && equal2(format_str.data(), "{}")) { auto arg = args.get(0); if (!arg) error_handler().on_error("argument not found"); return visit_format_arg(stringifier(), arg); } memory_buffer buffer; detail::vformat_to(buffer, format_str, args); return to_string(buffer); } FMT_FUNC void vprint(std::FILE* f, string_view format_str, format_args args) { memory_buffer buffer; detail::vformat_to(buffer, format_str, basic_format_args>(args)); #ifdef _WIN32 auto fd = _fileno(f); if (_isatty(fd)) { detail::utf8_to_utf16 u16(string_view(buffer.data(), buffer.size())); auto written = DWORD(); if (!WriteConsoleW(reinterpret_cast(_get_osfhandle(fd)), u16.c_str(), static_cast(u16.size()), &written, nullptr)) { FMT_THROW(format_error("failed to write to console")); } return; } #endif detail::fwrite_fully(buffer.data(), 1, buffer.size(), f); } #ifdef _WIN32 // Print assuming legacy (non-Unicode) encoding. FMT_FUNC void detail::vprint_mojibake(std::FILE* f, string_view format_str, format_args args) { memory_buffer buffer; detail::vformat_to(buffer, format_str, basic_format_args>(args)); fwrite_fully(buffer.data(), 1, buffer.size(), f); } #endif FMT_FUNC void vprint(string_view format_str, format_args args) { vprint(stdout, format_str, args); } FMT_END_NAMESPACE #ifdef _MSC_VER # pragma warning(pop) #endif #endif // FMT_FORMAT_INL_H_