/** * Copyright 2013-2021 Software Radio Systems Limited * * This file is part of srsRAN. * * srsRAN is free software: you can redistribute it and/or modify * it under the terms of the GNU Affero General Public License as * published by the Free Software Foundation, either version 3 of * the License, or (at your option) any later version. * * srsRAN is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Affero General Public License for more details. * * A copy of the GNU Affero General Public License can be found in * the LICENSE file in the top-level directory of this distribution * and at http://www.gnu.org/licenses/. * */ #ifndef SRSRAN_BUFFER_POOL_H #define SRSRAN_BUFFER_POOL_H #include "byte_buffer.h" #include "srsran/adt/bounded_vector.h" #include #include #include #include #include #include #include "srsran/adt/pool/fixed_size_pool.h" #include "srsran/common/common.h" #include "srsran/srslog/srslog.h" namespace srsran { /****************************************************************************** * Buffer pool * * Preallocates a large number of buffer_t and provides allocate and * deallocate functions. Provides quick object creation and deletion as well * as object reuse. * Singleton class of byte_buffer_t (but other pools of different type can be created) *****************************************************************************/ template class buffer_pool { public: // non-static methods buffer_pool(int capacity_ = -1) { uint32_t nof_buffers = POOL_SIZE; if (capacity_ > 0) { nof_buffers = (uint32_t)capacity_; } pool.reserve(nof_buffers); free_list.reserve(nof_buffers); pthread_mutex_init(&mutex, nullptr); pthread_cond_init(&cv_not_empty, nullptr); for (uint32_t i = 0; i < nof_buffers; i++) { buffer_t* b = new (std::nothrow) buffer_t; if (!b) { perror("Error allocating memory. Exiting...\n"); exit(-1); } pool.push_back(b); free_list.push_back(b); } capacity = nof_buffers; } ~buffer_pool() { for (auto* p : pool) { delete p; } pthread_cond_destroy(&cv_not_empty); pthread_mutex_destroy(&mutex); } void print_all_buffers() { printf("%d buffers in queue\n", static_cast(pool.size() - free_list.size())); #ifdef SRSRAN_BUFFER_POOL_LOG_ENABLED std::map buffer_cnt; for (uint32_t i = 0; i < pool.size(); i++) { if (std::find(free_list.cbegin(), free_list.cend(), pool[i]) == free_list.cend()) { buffer_cnt[strlen(pool[i]->debug_name) ? pool[i]->debug_name : "Undefined"]++; } } std::map::iterator it; for (it = buffer_cnt.begin(); it != buffer_cnt.end(); it++) { printf(" - %dx %s\n", it->second, it->first.c_str()); } #endif } uint32_t nof_available_pdus() { return free_list.size(); } bool is_almost_empty() { return free_list.size() < capacity / 20; } buffer_t* allocate(const char* debug_name = nullptr, bool blocking = false) { pthread_mutex_lock(&mutex); buffer_t* b = nullptr; if (!free_list.empty()) { b = free_list.back(); free_list.pop_back(); if (is_almost_empty()) { printf("Warning buffer pool capacity is %f %%\n", (float)100 * free_list.size() / capacity); } #ifdef SRSRAN_BUFFER_POOL_LOG_ENABLED if (debug_name) { strncpy(b->debug_name, debug_name, SRSRAN_BUFFER_POOL_LOG_NAME_LEN); b->debug_name[SRSRAN_BUFFER_POOL_LOG_NAME_LEN - 1] = 0; } #endif } else if (blocking) { // blocking allocation while (free_list.empty()) { pthread_cond_wait(&cv_not_empty, &mutex); } // retrieve the new buffer b = free_list.back(); free_list.pop_back(); // do not print any warning } else { printf("Error - buffer pool is empty\n"); #ifdef SRSRAN_BUFFER_POOL_LOG_ENABLED print_all_buffers(); #endif } pthread_mutex_unlock(&mutex); return b; } bool deallocate(buffer_t* b) { bool ret = false; pthread_mutex_lock(&mutex); if (std::find(pool.cbegin(), pool.cend(), b) != pool.cend()) { free_list.push_back(b); ret = true; } pthread_cond_signal(&cv_not_empty); pthread_mutex_unlock(&mutex); return ret; } private: static const int POOL_SIZE = 4096; std::vector pool; std::vector free_list; pthread_mutex_t mutex; pthread_cond_t cv_not_empty; uint32_t capacity; }; using byte_buffer_pool = concurrent_fixed_memory_pool; inline unique_byte_buffer_t make_byte_buffer() noexcept { return std::unique_ptr(new (std::nothrow) byte_buffer_t()); } inline unique_byte_buffer_t make_byte_buffer(uint32_t size, uint8_t value) noexcept { return std::unique_ptr(new (std::nothrow) byte_buffer_t(size, value)); } inline unique_byte_buffer_t make_byte_buffer(const char* debug_ctxt) noexcept { std::unique_ptr buffer(new (std::nothrow) byte_buffer_t()); if (buffer == nullptr) { srslog::fetch_basic_logger("POOL").error("Failed to allocate byte buffer in %s", debug_ctxt); } return buffer; } inline unique_byte_buffer_t make_byte_buffer(const uint8_t* payload, uint32_t len, const char* debug_ctxt) noexcept { std::unique_ptr buffer(new (std::nothrow) byte_buffer_t()); if (buffer == nullptr) { srslog::fetch_basic_logger("POOL").error("Failed to allocate byte buffer in %s", debug_ctxt); } else { if (buffer->get_tailroom() >= len) { memcpy(buffer->msg, payload, len); buffer->N_bytes = len; } else { srslog::fetch_basic_logger("POOL").error( "Failed to create byte buffer in %s. Payload too large (%d > %d)", debug_ctxt, len, buffer->get_tailroom()); } } return buffer; } namespace detail { struct byte_buffer_pool_deleter { void operator()(void* ptr) { byte_buffer_pool::get_instance()->deallocate_node(ptr); } }; } // namespace detail /** * Class to wrap objects of type T which get allocated/deallocated using the byte_buffer_pool * @tparam T type of the object being allocated */ template struct byte_buffer_pool_ptr { static_assert(sizeof(T) <= byte_buffer_pool::BLOCK_SIZE, "pool_bounded_vector does not fit buffer pool block size"); public: byte_buffer_pool_ptr() = default; void reset() { ptr.reset(); } T* operator->() { return ptr.get(); } const T* operator->() const { return ptr.get(); } T& operator*() { return *ptr; } const T& operator*() const { return *ptr; } bool has_value() const { return ptr.get() != nullptr; } template void emplace(CtorArgs&&... args) { ptr.reset(make(std::forward(args)...).ptr.release()); } template static byte_buffer_pool_ptr make(CtorArgs&&... args) { void* memblock = byte_buffer_pool::get_instance()->allocate_node(sizeof(T)); if (memblock == nullptr) { return byte_buffer_pool_ptr(); } new (memblock) T(std::forward(args)...); byte_buffer_pool_ptr ret; ret.ptr = std::unique_ptr(static_cast(memblock), detail::byte_buffer_pool_deleter()); return ret; }; private: std::unique_ptr ptr; }; } // namespace srsran #endif // SRSRAN_BUFFER_POOL_H