/* * Copyright 2013-2019 Software Radio Systems Limited * * This file is part of srsLTE. * * srsLTE is free software: you can redistribute it and/or modify * it under the terms of the GNU Affero General Public License as * published by the Free Software Foundation, either version 3 of * the License, or (at your option) any later version. * * srsLTE is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Affero General Public License for more details. * * A copy of the GNU Affero General Public License can be found in * the LICENSE file in the top-level directory of this distribution * and at http://www.gnu.org/licenses/. * */ #include "srslte/upper/pdcp_entity_base.h" #include "srslte/common/int_helpers.h" #include "srslte/common/security.h" #include namespace srslte { pdcp_entity_base::pdcp_entity_base(srslte::timer_handler* timers_, srslte::log* log_) : log(log_), timers(timers_) {} pdcp_entity_base::~pdcp_entity_base() {} void pdcp_entity_base::config_security(uint8_t* k_rrc_enc_, uint8_t* k_rrc_int_, uint8_t* k_up_enc_, uint8_t* k_up_int_, CIPHERING_ALGORITHM_ID_ENUM cipher_algo_, INTEGRITY_ALGORITHM_ID_ENUM integ_algo_) { for (int i = 0; i < 32; i++) { k_rrc_enc[i] = k_rrc_enc_[i]; k_rrc_int[i] = k_rrc_int_[i]; k_up_enc[i] = k_up_enc_[i]; if (k_up_int_ != nullptr) { k_up_int[i] = k_up_int_[i]; } } cipher_algo = cipher_algo_; integ_algo = integ_algo_; log->info("Configuring security with %s and %s\n", integrity_algorithm_id_text[integ_algo], ciphering_algorithm_id_text[cipher_algo]); log->debug_hex(k_rrc_enc, 32, "K_rrc_enc"); log->debug_hex(k_up_enc, 32, "K_up_enc"); log->debug_hex(k_rrc_int, 32, "K_rrc_int"); log->debug_hex(k_up_int, 32, "K_up_int"); } /**************************************************************************** * Security functions ***************************************************************************/ void pdcp_entity_base::integrity_generate(uint8_t* msg, uint32_t msg_len, uint32_t count, uint8_t* mac) { uint8_t* k_int; // If control plane use RRC integrity key. If data use user plane key if (is_srb()) { k_int = k_rrc_int; } else { k_int = k_up_int; } switch (integ_algo) { case INTEGRITY_ALGORITHM_ID_EIA0: break; case INTEGRITY_ALGORITHM_ID_128_EIA1: security_128_eia1(&k_int[16], count, cfg.bearer_id - 1, cfg.tx_direction, msg, msg_len, mac); break; case INTEGRITY_ALGORITHM_ID_128_EIA2: security_128_eia2(&k_int[16], count, cfg.bearer_id - 1, cfg.tx_direction, msg, msg_len, mac); break; case INTEGRITY_ALGORITHM_ID_128_EIA3: security_128_eia3(&k_int[16], count, cfg.bearer_id - 1, cfg.tx_direction, msg, msg_len, mac); break; default: break; } log->debug("Integrity gen input: COUNT %" PRIu32 ", Bearer ID %d, Direction %s\n", count, cfg.bearer_id, (cfg.tx_direction == SECURITY_DIRECTION_DOWNLINK ? "Downlink" : "Uplink")); log->debug_hex(msg, msg_len, "Integrity gen input msg:"); log->debug_hex(mac, 4, "MAC (generated)"); } bool pdcp_entity_base::integrity_verify(uint8_t* msg, uint32_t msg_len, uint32_t count, uint8_t* mac) { uint8_t mac_exp[4] = {}; bool is_valid = true; uint8_t* k_int; // If control plane use RRC integrity key. If data use user plane key if (is_srb()) { k_int = k_rrc_int; } else { k_int = k_up_int; } switch (integ_algo) { case INTEGRITY_ALGORITHM_ID_EIA0: break; case INTEGRITY_ALGORITHM_ID_128_EIA1: security_128_eia1(&k_int[16], count, cfg.bearer_id - 1, cfg.rx_direction, msg, msg_len, mac_exp); break; case INTEGRITY_ALGORITHM_ID_128_EIA2: security_128_eia2(&k_int[16], count, cfg.bearer_id - 1, cfg.rx_direction, msg, msg_len, mac_exp); break; case INTEGRITY_ALGORITHM_ID_128_EIA3: security_128_eia3(&k_int[16], count, cfg.bearer_id - 1, cfg.rx_direction, msg, msg_len, mac_exp); break; default: break; } log->debug("Integrity check input: COUNT %" PRIu32 ", Bearer ID %d, Direction %s\n", count, cfg.bearer_id, cfg.rx_direction == SECURITY_DIRECTION_DOWNLINK ? "Downlink" : "Uplink"); log->debug_hex(msg, msg_len, "Integrity check input msg:"); if (integ_algo != INTEGRITY_ALGORITHM_ID_EIA0) { for (uint8_t i = 0; i < 4; i++) { if (mac[i] != mac_exp[i]) { log->error_hex(mac_exp, 4, "MAC mismatch (expected)"); log->error_hex(mac, 4, "MAC mismatch (found)"); is_valid = false; break; } } if (is_valid) { log->info_hex(mac_exp, 4, "MAC match"); } } return is_valid; } void pdcp_entity_base::cipher_encrypt(uint8_t* msg, uint32_t msg_len, uint32_t count, uint8_t* ct) { uint8_t* k_enc; uint8_t ct_tmp[PDCP_MAX_SDU_SIZE]; // If control plane use RRC encrytion key. If data use user plane key if (is_srb()) { k_enc = k_rrc_enc; } else { k_enc = k_up_enc; } log->debug("Cipher encrypt input: COUNT: %" PRIu32 ", Bearer ID: %d, Direction %s\n", count, cfg.bearer_id, cfg.tx_direction == SECURITY_DIRECTION_DOWNLINK ? "Downlink" : "Uplink"); log->debug_hex(msg, msg_len, "Cipher encrypt input msg"); switch (cipher_algo) { case CIPHERING_ALGORITHM_ID_EEA0: break; case CIPHERING_ALGORITHM_ID_128_EEA1: security_128_eea1(&(k_enc[16]), count, cfg.bearer_id - 1, cfg.tx_direction, msg, msg_len, ct_tmp); memcpy(ct, ct_tmp, msg_len); break; case CIPHERING_ALGORITHM_ID_128_EEA2: security_128_eea2(&(k_enc[16]), count, cfg.bearer_id - 1, cfg.tx_direction, msg, msg_len, ct_tmp); memcpy(ct, ct_tmp, msg_len); break; case CIPHERING_ALGORITHM_ID_128_EEA3: security_128_eea3(&(k_enc[16]), count, cfg.bearer_id - 1, cfg.tx_direction, msg, msg_len, ct_tmp); memcpy(ct, ct_tmp, msg_len); break; default: break; } log->debug_hex(ct, msg_len, "Cipher encrypt output msg"); } void pdcp_entity_base::cipher_decrypt(uint8_t* ct, uint32_t ct_len, uint32_t count, uint8_t* msg) { uint8_t* k_enc; uint8_t msg_tmp[PDCP_MAX_SDU_SIZE]; // If control plane use RRC encrytion key. If data use user plane key if (is_srb()) { k_enc = k_rrc_enc; } else { k_enc = k_up_enc; } log->debug("Cipher decrypt input: COUNT: %" PRIu32 ", Bearer ID: %d, Direction %s\n", count, cfg.bearer_id, (cfg.rx_direction == SECURITY_DIRECTION_DOWNLINK) ? "Downlink" : "Uplink"); log->debug_hex(ct, ct_len, "Cipher decrypt input msg"); switch (cipher_algo) { case CIPHERING_ALGORITHM_ID_EEA0: break; case CIPHERING_ALGORITHM_ID_128_EEA1: security_128_eea1(&k_enc[16], count, cfg.bearer_id - 1, cfg.rx_direction, ct, ct_len, msg_tmp); memcpy(msg, msg_tmp, ct_len); break; case CIPHERING_ALGORITHM_ID_128_EEA2: security_128_eea2(&k_enc[16], count, cfg.bearer_id - 1, cfg.rx_direction, ct, ct_len, msg_tmp); memcpy(msg, msg_tmp, ct_len); break; case CIPHERING_ALGORITHM_ID_128_EEA3: security_128_eea3(&k_enc[16], count, cfg.bearer_id - 1, cfg.rx_direction, ct, ct_len, msg_tmp); memcpy(msg, msg_tmp, ct_len); break; default: break; } log->debug_hex(msg, ct_len, "Cipher decrypt output msg"); } /**************************************************************************** * Common pack functions ***************************************************************************/ uint32_t pdcp_entity_base::read_data_header(const unique_byte_buffer_t& pdu) { // Check PDU is long enough to extract header if (pdu->N_bytes <= cfg.hdr_len_bytes) { log->error("PDU too small to extract header\n"); return 0; } // Extract RCVD_SN uint16_t rcvd_sn_16 = 0; uint32_t rcvd_sn_32 = 0; switch (cfg.sn_len) { case PDCP_SN_LEN_5: rcvd_sn_32 = SN(pdu->msg[0]); break; case PDCP_SN_LEN_12: srslte::uint8_to_uint16(pdu->msg, &rcvd_sn_16); rcvd_sn_32 = SN(rcvd_sn_16); break; case PDCP_SN_LEN_18: srslte::uint8_to_uint24(pdu->msg, &rcvd_sn_32); rcvd_sn_32 = SN(rcvd_sn_32); break; default: log->error("Cannot extract RCVD_SN, invalid SN length configured: %d\n", cfg.sn_len); } return rcvd_sn_32; } void pdcp_entity_base::discard_data_header(const unique_byte_buffer_t& pdu) { pdu->msg += cfg.hdr_len_bytes; pdu->N_bytes -= cfg.hdr_len_bytes; } void pdcp_entity_base::write_data_header(const srslte::unique_byte_buffer_t& sdu, uint32_t count) { // Add room for header if (cfg.hdr_len_bytes > sdu->get_headroom()) { log->error("Not enough space to add header\n"); return; } sdu->msg -= cfg.hdr_len_bytes; sdu->N_bytes += cfg.hdr_len_bytes; // Add SN switch (cfg.sn_len) { case PDCP_SN_LEN_5: sdu->msg[0] = SN(count); // Data PDU and SN LEN 5 implies SRB, D flag must not be present break; case PDCP_SN_LEN_12: srslte::uint16_to_uint8(SN(count), sdu->msg); if (is_drb()) { sdu->msg[0] |= 0x80; // On Data PDUs for DRBs we must set the D flag. } break; case PDCP_SN_LEN_18: srslte::uint24_to_uint8(SN(count), sdu->msg); sdu->msg[0] |= 0x80; // Data PDU and SN LEN 18 implies DRB, D flag must be present break; default: log->error("Invalid SN length configuration: %d bits\n", cfg.sn_len); } } void pdcp_entity_base::extract_mac(const unique_byte_buffer_t& pdu, uint8_t* mac) { // Check enough space for MAC if (pdu->N_bytes < 4) { log->error("PDU too small to extract MAC-I\n"); return; } // Extract MAC memcpy(mac, &pdu->msg[pdu->N_bytes - 4], 4); pdu->N_bytes -= 4; } void pdcp_entity_base::append_mac(const unique_byte_buffer_t& sdu, uint8_t* mac) { // Check enough space for MAC if (sdu->N_bytes + 4 > sdu->get_tailroom()) { log->error("Not enough space to add MAC-I\n"); return; } // Append MAC memcpy(&sdu->msg[sdu->N_bytes], mac, 4); sdu->N_bytes += 4; } } // namespace srslte