/* * Copyright 2013-2019 Software Radio Systems Limited * * This file is part of srsLTE. * * srsLTE is free software: you can redistribute it and/or modify * it under the terms of the GNU Affero General Public License as * published by the Free Software Foundation, either version 3 of * the License, or (at your option) any later version. * * srsLTE is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Affero General Public License for more details. * * A copy of the GNU Affero General Public License can be found in * the LICENSE file in the top-level directory of this distribution * and at http://www.gnu.org/licenses/. * */ #include "srslte/upper/pdcp_entity_nr.h" #include "srslte/common/security.h" namespace srslte { pdcp_entity_nr::pdcp_entity_nr(srsue::rlc_interface_pdcp* rlc_, srsue::rrc_interface_pdcp* rrc_, srsue::gw_interface_pdcp* gw_, srslte::timer_handler* timers_, srslte::log* log_) : pdcp_entity_base(timers_, log_), rlc(rlc_), rrc(rrc_), gw(gw_), reordering_fnc(new pdcp_entity_nr::reordering_callback(this)) { } pdcp_entity_nr::~pdcp_entity_nr() {} void pdcp_entity_nr::init(uint32_t lcid_, pdcp_config_t cfg_) { lcid = lcid_; cfg = cfg_; active = true; do_integrity = false; do_encryption = false; window_size = 1 << (cfg.sn_len - 1); // Timers reordering_timer = timers->get_unique_timer(); // configure timer if (static_cast(cfg.t_reordering) > 0) { reordering_timer.set(static_cast(cfg.t_reordering), *reordering_fnc); } // Mark entity as initialized initialized = true; } // Reestablishment procedure: 38.323 5.2 void pdcp_entity_nr::reestablish() { log->info("Re-establish %s with bearer ID: %d\n", rrc->get_rb_name(lcid).c_str(), cfg.bearer_id); // TODO } // Used to stop/pause the entity (called on RRC conn release) void pdcp_entity_nr::reset() { active = false; if (log != nullptr) { log->debug("Reset %s\n", rrc->get_rb_name(lcid).c_str()); } } // SDAP/RRC interface void pdcp_entity_nr::write_sdu(unique_byte_buffer_t sdu, bool blocking) { // Check initialization if (not initialized) { return; } // Log SDU log->info_hex(sdu->msg, sdu->N_bytes, "TX %s SDU, do_integrity = %s, do_encryption = %s", rrc->get_rb_name(lcid).c_str(), (do_integrity) ? "true" : "false", (do_encryption) ? "true" : "false"); // Check for COUNT overflow if (tx_overflow) { log->warning("TX_NEXT has overflowed. Droping packet\n"); return; } if (tx_next + 1 == 0) { tx_overflow = true; } // Start discard timer if (cfg.discard_timer != pdcp_discard_timer_t::infinity) { timer_handler::unique_timer discard_timer = timers->get_unique_timer(); discard_callback discard_fnc(this, tx_next); discard_timer.set(static_cast(cfg.discard_timer), discard_fnc); discard_timer.run(); discard_timers_map.insert(std::make_pair(tx_next, std::move(discard_timer))); log->debug("Discard Timer set for SN %u. Timeout: %ums\n", tx_next, static_cast(cfg.discard_timer)); } // Perform header compression TODO // Integrity protection uint8_t mac[4]; integrity_generate(sdu->msg, sdu->N_bytes, tx_next, mac); // Ciphering cipher_encrypt(sdu->msg, sdu->N_bytes, tx_next, sdu->msg); // Write PDCP header info write_data_header(sdu, tx_next); // Append MAC-I append_mac(sdu, mac); // Increment TX_NEXT tx_next++; // Check if PDCP is associated with more than on RLC entity TODO // Write to lower layers rlc->write_sdu(lcid, std::move(sdu), blocking); } // RLC interface void pdcp_entity_nr::write_pdu(unique_byte_buffer_t pdu) { // Check initialization if (not initialized) { return; } // Log PDU log->info_hex(pdu->msg, pdu->N_bytes, "RX %s PDU (%d B), do_integrity = %s, do_encryption = %s", rrc->get_rb_name(lcid).c_str(), pdu->N_bytes, (do_integrity) ? "true" : "false", (do_encryption) ? "true" : "false"); // Sanity check if (pdu->N_bytes <= cfg.hdr_len_bytes) { return; } // Extract RCVD_SN from header uint32_t rcvd_sn = read_data_header(pdu); // Extract MAC uint8_t mac[4]; extract_mac(pdu, mac); // Calculate RCVD_COUNT uint32_t rcvd_hfn, rcvd_count; if ((int64_t)rcvd_sn < (int64_t)SN(rx_deliv) - (int64_t)window_size) { rcvd_hfn = HFN(rx_deliv) + 1; } else if (rcvd_sn >= SN(rx_deliv) + window_size) { rcvd_hfn = HFN(rx_deliv) - 1; } else { rcvd_hfn = HFN(rx_deliv); } rcvd_count = COUNT(rcvd_hfn, rcvd_sn); log->debug("RCVD_HFN %u RCVD_SN %u, RCVD_COUNT %u\n", rcvd_hfn, rcvd_sn, rcvd_count); // Decripting cipher_decrypt(pdu->msg, pdu->N_bytes, rcvd_count, pdu->msg); // Integrity check bool is_valid = integrity_verify(pdu->msg, pdu->N_bytes, rcvd_count, mac); if (!is_valid) { return; // Invalid packet, drop. } // Check valid rcvd_count if (rcvd_count < rx_deliv) { log->debug("Out-of-order after time-out, duplicate or COUNT wrap-around\n"); log->debug("RCVD_COUNT %u, RCVD_COUNT %u\n", rcvd_count, rx_deliv); return; // Invalid count, drop. } // Check if PDU has been received if (reorder_queue.find(rcvd_count) != reorder_queue.end()) { return; // PDU already present, drop. } // Store PDU in reception buffer reorder_queue[rcvd_count] = std::move(pdu); // Update RX_NEXT if (rcvd_count >= rx_next) { rx_next = rcvd_count + 1; } // TODO if out-of-order configured, submit to upper layer if (rcvd_count == rx_deliv) { // Deliver to upper layers in ascending order of associeted COUNT deliver_all_consecutive_counts(); } // Handle reordering timers if (reordering_timer.is_running() and rx_deliv >= rx_reord) { reordering_timer.stop(); } if (not reordering_timer.is_running() and rx_deliv < rx_next) { rx_reord = rx_next; reordering_timer.run(); } } /* * Packing / Unpacking Helpers */ // Deliver all consecutivly associated COUNTs. // Update RX_NEXT after submitting to higher layers void pdcp_entity_nr::deliver_all_consecutive_counts() { for (std::map::iterator it = reorder_queue.begin(); it != reorder_queue.end() && it->first == rx_deliv; reorder_queue.erase(it++)) { log->debug("Delivering SDU with RCVD_COUNT %u\n", it->first); // Check RX_DELIV overflow if (rx_overflow) { log->warning("RX_DELIV has overflowed. Droping packet\n"); return; } if (rx_deliv + 1 == 0) { rx_overflow = true; } // Pass PDCP SDU to the next layers pass_to_upper_layers(std::move(it->second)); // Update RX_DELIV rx_deliv = rx_deliv + 1; } } /* * Timers */ // Reordering Timer Callback (t-reordering) void pdcp_entity_nr::reordering_callback::operator()(uint32_t timer_id) { parent->log->debug("Reordering timer expired\n"); // Deliver all PDCP SDU(s) with associeted COUNT value(s) < RX_REORD for (std::map::iterator it = parent->reorder_queue.begin(); it != parent->reorder_queue.end() && it->first < parent->rx_reord; parent->reorder_queue.erase(it++)) { // Deliver to upper layers parent->pass_to_upper_layers(std::move(it->second)); } // Deliver all PDCP SDU(s) consecutivly associeted COUNT value(s) starting from RX_REORD parent->deliver_all_consecutive_counts(); if (parent->rx_deliv < parent->rx_next) { parent->rx_reord = parent->rx_next; parent->reordering_timer.run(); } return; } // Discard Timer Callback (discardTimer) void pdcp_entity_nr::discard_callback::operator()(uint32_t timer_id) { parent->log->debug("Discard timer expired for PDU with SN = %d\n", discard_sn); // Notify the RLC of the discard. It's the RLC to actually discard, if no segment was transmitted yet. parent->rlc->discard_sdu(parent->lcid, discard_sn); // Remove timer from map // NOTE: this will delete the callback. It *must* be the last instruction. parent->discard_timers_map.erase(discard_sn); return; } } // namespace srslte