/** * * \section COPYRIGHT * * Copyright 2013-2021 Software Radio Systems Limited * * By using this file, you agree to the terms and conditions set * forth in the LICENSE file which can be found at the top level of * the distribution. * */ #include #include #include #include #include #include #include #include "srsran/common/pcap.h" #include "srsran/phy/ch_estimation/chest_sl.h" #include "srsran/phy/common/phy_common_sl.h" #include "srsran/phy/dft/ofdm.h" #include "srsran/phy/phch/pscch.h" #include "srsran/phy/phch/pssch.h" #include "srsran/phy/phch/ra_sl.h" #include "srsran/phy/phch/sci.h" #include "srsran/phy/rf/rf.h" #include "srsran/phy/ue/ue_sync.h" #include "srsran/phy/utils/bit.h" #include "srsran/phy/utils/debug.h" #include "srsran/phy/utils/vector.h" #define PCAP_FILENAME "/tmp/pssch.pcap" static bool keep_running = true; static srsran_cell_sl_t cell_sl = {.nof_prb = 50, .tm = SRSRAN_SIDELINK_TM4, .cp = SRSRAN_CP_NORM, .N_sl_id = 0}; typedef struct { bool use_standard_lte_rates; bool disable_plots; char* input_file_name; uint32_t file_start_sf_idx; uint32_t nof_rx_antennas; char* rf_dev; char* rf_args; double rf_freq; float rf_gain; // Sidelink specific args uint32_t size_sub_channel; uint32_t num_sub_channel; } prog_args_t; void args_default(prog_args_t* args) { args->disable_plots = false; args->use_standard_lte_rates = false; args->input_file_name = NULL; args->file_start_sf_idx = 0; args->nof_rx_antennas = 1; args->rf_dev = ""; args->rf_dev = ""; args->rf_args = ""; args->rf_freq = 5.92e9; args->rf_gain = 50; args->size_sub_channel = 10; args->num_sub_channel = 5; } static srsran_pscch_t pscch = {}; // Defined global for plotting thread static srsran_pssch_t pssch = {}; #ifndef DISABLE_RF static srsran_rf_t radio; #endif // DISABLE_RF static prog_args_t prog_args; static srsran_filesource_t fsrc = {}; #ifdef ENABLE_GUI #include "srsgui/srsgui.h" void init_plots(); static pthread_t plot_thread; static sem_t plot_sem; #endif // ENABLE_GUI void sig_int_handler(int signo) { printf("SIGINT received. Exiting...\n"); if (signo == SIGINT) { keep_running = false; } else if (signo == SIGSEGV) { exit(1); } } void pcap_pack_and_write(FILE* pcap_file, uint8_t* pdu, uint32_t pdu_len_bytes, uint8_t reTX, bool crc_ok, uint32_t tti, uint16_t crnti, uint8_t direction, uint8_t rnti_type) { MAC_Context_Info_t context = {.radioType = FDD_RADIO, .direction = direction, .rntiType = rnti_type, .rnti = crnti, .ueid = 1, .isRetx = reTX, .crcStatusOK = crc_ok, .sysFrameNumber = (uint16_t)(tti / SRSRAN_NOF_SF_X_FRAME), .subFrameNumber = (uint16_t)(tti % SRSRAN_NOF_SF_X_FRAME), .nbiotMode = 0}; if (pdu) { LTE_PCAP_MAC_WritePDU(pcap_file, &context, pdu, pdu_len_bytes); } } void usage(prog_args_t* args, char* prog) { printf("Usage: %s [agrnmv] -f rx_frequency_hz\n", prog); printf("\t-a RF args [Default %s]\n", args->rf_args); printf("\t-d RF devicename [Default %s]\n", args->rf_dev); printf("\t-i input_file_name\n"); printf("\t-m Start subframe_idx [Default %d]\n", args->file_start_sf_idx); printf("\t-g RF Gain [Default %.2f dB]\n", args->rf_gain); printf("\t-A nof_rx_antennas [Default %d]\n", args->nof_rx_antennas); printf("\t-c N_sl_id [Default %d]\n", cell_sl.N_sl_id); printf("\t-p nof_prb [Default %d]\n", cell_sl.nof_prb); printf("\t-s size_sub_channel [Default for 50 prbs %d]\n", args->size_sub_channel); printf("\t-n num_sub_channel [Default for 50 prbs %d]\n", args->num_sub_channel); printf("\t-t Sidelink transmission mode {1,2,3,4} [Default %d]\n", (cell_sl.tm + 1)); printf("\t-r use_standard_lte_rates [Default %i]\n", args->use_standard_lte_rates); #ifdef ENABLE_GUI printf("\t-w disable plots [Default enabled]\n"); #endif printf("\t-v srsran_verbose\n"); } void parse_args(prog_args_t* args, int argc, char** argv) { int opt; args_default(args); while ((opt = getopt(argc, argv, "acdimgpvwrxfA")) != -1) { switch (opt) { case 'a': args->rf_args = argv[optind]; break; case 'c': cell_sl.N_sl_id = (int32_t)strtol(argv[optind], NULL, 10); break; case 'd': args->rf_dev = argv[optind]; break; case 'i': args->input_file_name = argv[optind]; break; case 'm': args->file_start_sf_idx = (uint32_t)strtol(argv[optind], NULL, 10); break; case 'g': args->rf_gain = strtof(argv[optind], NULL); break; case 'p': cell_sl.nof_prb = (int32_t)strtol(argv[optind], NULL, 10); break; case 'f': args->rf_freq = strtof(argv[optind], NULL); break; case 'A': args->nof_rx_antennas = (int32_t)strtol(argv[optind], NULL, 10); break; case 'v': srsran_verbose++; break; case 'w': args->disable_plots = true; break; case 'r': args->use_standard_lte_rates = true; break; default: usage(args, argv[0]); exit(-1); } } if (args->rf_freq < 0 && args->input_file_name == NULL) { usage(args, argv[0]); exit(-1); } } #ifndef DISABLE_RF int srsran_rf_recv_wrapper(void* h, cf_t* data[SRSRAN_MAX_PORTS], uint32_t nsamples, srsran_timestamp_t* t) { DEBUG(" ---- Receive %d samples ----", nsamples); void* ptr[SRSRAN_MAX_PORTS]; for (int i = 0; i < SRSRAN_MAX_PORTS; i++) { ptr[i] = data[i]; } return srsran_rf_recv_with_time_multi(h, ptr, nsamples, true, &t->full_secs, &t->frac_secs); } #endif // DISABLE_RF int main(int argc, char** argv) { signal(SIGINT, sig_int_handler); sigset_t sigset; sigemptyset(&sigset); sigaddset(&sigset, SIGINT); sigprocmask(SIG_UNBLOCK, &sigset, NULL); uint32_t num_decoded_sci = 0; uint32_t num_decoded_tb = 0; parse_args(&prog_args, argc, argv); FILE* pcap_file = LTE_PCAP_Open(MAC_LTE_DLT, PCAP_FILENAME); srsran_use_standard_symbol_size(prog_args.use_standard_lte_rates); srsran_sl_comm_resource_pool_t sl_comm_resource_pool; if (srsran_sl_comm_resource_pool_get_default_config(&sl_comm_resource_pool, cell_sl) != SRSRAN_SUCCESS) { ERROR("Error initializing sl_comm_resource_pool"); return SRSRAN_ERROR; } if (prog_args.input_file_name) { if (srsran_filesource_init(&fsrc, prog_args.input_file_name, SRSRAN_COMPLEX_FLOAT_BIN)) { printf("Error opening file %s\n", prog_args.input_file_name); return SRSRAN_ERROR; } } #ifndef DISABLE_RF if (!prog_args.input_file_name) { printf("Opening RF device...\n"); if (srsran_rf_open_multi(&radio, prog_args.rf_args, prog_args.nof_rx_antennas)) { ERROR("Error opening rf"); exit(-1); } srsran_rf_set_rx_gain(&radio, prog_args.rf_gain); printf("Set RX freq: %.6f MHz\n", srsran_rf_set_rx_freq(&radio, prog_args.nof_rx_antennas, prog_args.rf_freq) / 1e6); printf("Set RX gain: %.1f dB\n", prog_args.rf_gain); int srate = srsran_sampling_freq_hz(cell_sl.nof_prb); if (srate != -1) { printf("Setting sampling rate %.2f MHz\n", (float)srate / 1000000); float srate_rf = srsran_rf_set_rx_srate(&radio, (double)srate); if (srate_rf != srate) { ERROR("Could not set sampling rate"); exit(-1); } } else { ERROR("Invalid number of PRB %d", cell_sl.nof_prb); exit(-1); } } #endif // DISABLE_RF // allocate Rx buffers for 1ms worth of samples uint32_t sf_len = SRSRAN_SF_LEN_PRB(cell_sl.nof_prb); printf("Using a SF len of %d samples\n", sf_len); cf_t* rx_buffer[SRSRAN_MAX_CHANNELS] = {}; //< For radio to receive samples cf_t* sf_buffer[SRSRAN_MAX_PORTS] = {NULL}; ///< For OFDM object to store subframe after FFT for (int i = 0; i < prog_args.nof_rx_antennas; i++) { rx_buffer[i] = srsran_vec_cf_malloc(sf_len); if (!rx_buffer[i]) { perror("malloc"); exit(-1); } sf_buffer[i] = srsran_vec_cf_malloc(sf_len); if (!sf_buffer[i]) { perror("malloc"); exit(-1); } } uint32_t sf_n_re = SRSRAN_CP_NSYMB(SRSRAN_CP_NORM) * SRSRAN_NRE * 2 * cell_sl.nof_prb; cf_t* equalized_sf_buffer = srsran_vec_malloc(sizeof(cf_t) * sf_n_re); // RX srsran_ofdm_t fft[SRSRAN_MAX_PORTS]; srsran_ofdm_cfg_t ofdm_cfg = {}; ofdm_cfg.nof_prb = cell_sl.nof_prb; ofdm_cfg.cp = SRSRAN_CP_NORM; ofdm_cfg.rx_window_offset = 0.0f; ofdm_cfg.normalize = true; ofdm_cfg.sf_type = SRSRAN_SF_NORM; ofdm_cfg.freq_shift_f = -0.5; for (int i = 0; i < prog_args.nof_rx_antennas; i++) { ofdm_cfg.in_buffer = rx_buffer[0]; ofdm_cfg.out_buffer = sf_buffer[0]; if (srsran_ofdm_rx_init_cfg(&fft[i], &ofdm_cfg)) { ERROR("Error initiating FFT"); goto clean_exit; } } // SCI srsran_sci_t sci; srsran_sci_init(&sci, cell_sl, sl_comm_resource_pool); uint8_t sci_rx[SRSRAN_SCI_MAX_LEN] = {}; char sci_msg[SRSRAN_SCI_MSG_MAX_LEN] = {}; // init PSCCH object if (srsran_pscch_init(&pscch, SRSRAN_MAX_PRB) != SRSRAN_SUCCESS) { ERROR("Error in PSCCH init"); return SRSRAN_ERROR; } if (srsran_pscch_set_cell(&pscch, cell_sl) != SRSRAN_SUCCESS) { ERROR("Error in PSCCH set cell"); return SRSRAN_ERROR; } // PSCCH Channel estimation srsran_chest_sl_cfg_t pscch_chest_sl_cfg = {}; srsran_chest_sl_t pscch_chest = {}; if (srsran_chest_sl_init(&pscch_chest, SRSRAN_SIDELINK_PSCCH, cell_sl, sl_comm_resource_pool) != SRSRAN_SUCCESS) { ERROR("Error in chest PSCCH init"); return SRSRAN_ERROR; } if (srsran_pssch_init(&pssch, cell_sl, sl_comm_resource_pool) != SRSRAN_SUCCESS) { ERROR("Error initializing PSSCH"); return SRSRAN_ERROR; } srsran_chest_sl_cfg_t pssch_chest_sl_cfg = {}; srsran_chest_sl_t pssch_chest = {}; if (srsran_chest_sl_init(&pssch_chest, SRSRAN_SIDELINK_PSSCH, cell_sl, sl_comm_resource_pool) != SRSRAN_SUCCESS) { ERROR("Error in chest PSSCH init"); return SRSRAN_ERROR; } uint8_t tb[SRSRAN_SL_SCH_MAX_TB_LEN] = {}; uint8_t packed_tb[SRSRAN_SL_SCH_MAX_TB_LEN / 8] = {}; #ifndef DISABLE_RF srsran_ue_sync_t ue_sync = {}; if (!prog_args.input_file_name) { srsran_cell_t cell = {}; cell.nof_prb = cell_sl.nof_prb; cell.cp = SRSRAN_CP_NORM; cell.nof_ports = 1; if (srsran_ue_sync_init_multi_decim_mode(&ue_sync, cell.nof_prb, false, srsran_rf_recv_wrapper, prog_args.nof_rx_antennas, (void*)&radio, 1, SYNC_MODE_GNSS)) { fprintf(stderr, "Error initiating sync_gnss\n"); exit(-1); } if (srsran_ue_sync_set_cell(&ue_sync, cell)) { ERROR("Error initiating ue_sync"); exit(-1); } srsran_rf_start_rx_stream(&radio, false); } #endif #ifdef ENABLE_GUI if (!prog_args.disable_plots) { init_plots(&pscch); sleep(1); } #endif uint32_t subframe_count = 0; uint32_t pscch_prb_start_idx = 0; uint32_t current_sf_idx = 0; if (prog_args.input_file_name) { current_sf_idx = prog_args.file_start_sf_idx; } while (keep_running) { if (prog_args.input_file_name) { // read subframe from file int nread = srsran_filesource_read(&fsrc, rx_buffer[0], sf_len); if (nread < 0) { fprintf(stderr, "Error reading from file\n"); goto clean_exit; } else if (nread == 0) { goto clean_exit; } else if (nread < sf_len) { fprintf(stderr, "Couldn't read entire subframe. Still processing ..\n"); nread = -1; } } else { #ifndef DISABLE_RF // receive subframe from radio int ret = srsran_ue_sync_zerocopy(&ue_sync, rx_buffer, sf_len); if (ret < 0) { ERROR("Error calling srsran_ue_sync_work()"); } // update SF index current_sf_idx = srsran_ue_sync_get_sfidx(&ue_sync); #endif // DISABLE_RF } // do FFT (on first port) srsran_ofdm_rx_sf(&fft[0]); for (int sub_channel_idx = 0; sub_channel_idx < sl_comm_resource_pool.num_sub_channel; sub_channel_idx++) { pscch_prb_start_idx = sub_channel_idx * sl_comm_resource_pool.size_sub_channel; for (uint32_t cyclic_shift = 0; cyclic_shift <= 9; cyclic_shift += 3) { // PSCCH Channel estimation pscch_chest_sl_cfg.cyclic_shift = cyclic_shift; pscch_chest_sl_cfg.prb_start_idx = pscch_prb_start_idx; srsran_chest_sl_set_cfg(&pscch_chest, pscch_chest_sl_cfg); srsran_chest_sl_ls_estimate_equalize(&pscch_chest, sf_buffer[0], equalized_sf_buffer); if (srsran_pscch_decode(&pscch, equalized_sf_buffer, sci_rx, pscch_prb_start_idx) == SRSRAN_SUCCESS) { if (srsran_sci_format1_unpack(&sci, sci_rx) == SRSRAN_SUCCESS) { srsran_sci_info(&sci, sci_msg, sizeof(sci_msg)); fprintf(stdout, "%s", sci_msg); num_decoded_sci++; // plot PSCCH #ifdef ENABLE_GUI if (!prog_args.disable_plots) { sem_post(&plot_sem); } #endif // Decode PSSCH uint32_t sub_channel_start_idx = 0; uint32_t L_subCH = 0; srsran_ra_sl_type0_from_riv( sci.riv, sl_comm_resource_pool.num_sub_channel, &L_subCH, &sub_channel_start_idx); // 3GPP TS 36.213 Section 14.1.1.4C uint32_t pssch_prb_start_idx = (sub_channel_idx * sl_comm_resource_pool.size_sub_channel) + pscch.pscch_nof_prb + sl_comm_resource_pool.start_prb_sub_channel; uint32_t nof_prb_pssch = ((L_subCH + sub_channel_idx) * sl_comm_resource_pool.size_sub_channel) - pssch_prb_start_idx + sl_comm_resource_pool.start_prb_sub_channel; // make sure PRBs are valid for DFT precoding nof_prb_pssch = srsran_dft_precoding_get_valid_prb(nof_prb_pssch); uint32_t N_x_id = 0; for (int j = 0; j < SRSRAN_SCI_CRC_LEN; j++) { N_x_id += pscch.sci_crc[j] * exp2(SRSRAN_SCI_CRC_LEN - 1 - j); } uint32_t rv_idx = 0; if (sci.retransmission == true) { rv_idx = 1; } // PSSCH Channel estimation pssch_chest_sl_cfg.N_x_id = N_x_id; pssch_chest_sl_cfg.sf_idx = current_sf_idx; pssch_chest_sl_cfg.prb_start_idx = pssch_prb_start_idx; pssch_chest_sl_cfg.nof_prb = nof_prb_pssch; srsran_chest_sl_set_cfg(&pssch_chest, pssch_chest_sl_cfg); srsran_chest_sl_ls_estimate_equalize(&pssch_chest, sf_buffer[0], equalized_sf_buffer); srsran_pssch_cfg_t pssch_cfg = { pssch_prb_start_idx, nof_prb_pssch, N_x_id, sci.mcs_idx, rv_idx, current_sf_idx}; if (srsran_pssch_set_cfg(&pssch, pssch_cfg) == SRSRAN_SUCCESS) { if (srsran_pssch_decode(&pssch, equalized_sf_buffer, tb, SRSRAN_SL_SCH_MAX_TB_LEN) == SRSRAN_SUCCESS) { num_decoded_tb++; // pack bit sand write to PCAP srsran_bit_pack_vector(tb, packed_tb, pssch.sl_sch_tb_len); pcap_pack_and_write(pcap_file, packed_tb, pssch.sl_sch_tb_len / 8, 0, true, current_sf_idx, 0x1001, DIRECTION_UPLINK, SL_RNTI); #ifdef ENABLE_GUI // plot PSSCH if (!prog_args.disable_plots) { sem_post(&plot_sem); } if (prog_args.input_file_name) { printf("Press Enter to continue ...\n"); getchar(); } #endif } } } } if (SRSRAN_VERBOSE_ISDEBUG()) { char filename[64]; snprintf(filename, 64, "pscch_rx_syms_sf%d_shift%d_prbidx%d.bin", subframe_count, cyclic_shift, pscch_prb_start_idx); printf("Saving PSCCH symbols (%d) to %s\n", pscch.E / SRSRAN_PSCCH_QM, filename); srsran_vec_save_file(filename, pscch.mod_symbols, pscch.E / SRSRAN_PSCCH_QM * sizeof(cf_t)); } } } current_sf_idx = (current_sf_idx + 1) % 10; subframe_count++; } clean_exit: printf("num_decoded_sci=%d num_decoded_tb=%d\n", num_decoded_sci, num_decoded_tb); if (pcap_file != NULL) { printf("Saving PCAP file to %s\n", PCAP_FILENAME); LTE_PCAP_Close(pcap_file); } #ifdef ENABLE_GUI if (!prog_args.disable_plots) { sem_post(&plot_sem); usleep(1000); if (!pthread_kill(plot_thread, 0)) { pthread_kill(plot_thread, SIGHUP); pthread_join(plot_thread, NULL); } } sdrgui_exit(); #endif #ifndef DISABLE_RF srsran_rf_stop_rx_stream(&radio); srsran_rf_close(&radio); srsran_ue_sync_free(&ue_sync); #endif // DISABLE_RF srsran_sci_free(&sci); srsran_pscch_free(&pscch); srsran_chest_sl_free(&pscch_chest); srsran_chest_sl_free(&pssch_chest); for (int i = 0; i < prog_args.nof_rx_antennas; i++) { if (rx_buffer[i]) { free(rx_buffer[i]); } if (sf_buffer[i]) { free(sf_buffer[i]); } srsran_ofdm_rx_free(&fft[i]); } if (equalized_sf_buffer) { free(equalized_sf_buffer); } return SRSRAN_SUCCESS; } ///< Plotting Functions #ifdef ENABLE_GUI plot_scatter_t pscatequal_pscch; plot_scatter_t pscatequal_pssch; void* plot_thread_run(void* arg) { sdrgui_init(); plot_scatter_init(&pscatequal_pscch); plot_scatter_setTitle(&pscatequal_pscch, "PSCCH - Equalized Symbols"); plot_scatter_setXAxisScale(&pscatequal_pscch, -4, 4); plot_scatter_setYAxisScale(&pscatequal_pscch, -4, 4); plot_scatter_init(&pscatequal_pssch); plot_scatter_setTitle(&pscatequal_pssch, "PSSCH - Equalized Symbols"); plot_scatter_setXAxisScale(&pscatequal_pssch, -4, 4); plot_scatter_setYAxisScale(&pscatequal_pssch, -4, 4); plot_scatter_addToWindowGrid(&pscatequal_pscch, (char*)"pssch_ue", 0, 0); plot_scatter_addToWindowGrid(&pscatequal_pssch, (char*)"pssch_ue", 0, 1); while (keep_running) { sem_wait(&plot_sem); plot_scatter_setNewData(&pscatequal_pscch, pscch.mod_symbols, pscch.E / SRSRAN_PSCCH_QM); if (pssch.G > 0 && pssch.Qm > 0) { plot_scatter_setNewData(&pscatequal_pssch, pssch.symbols, pssch.G / pssch.Qm); } } return NULL; } void init_plots() { if (sem_init(&plot_sem, 0, 0)) { perror("sem_init"); exit(-1); } pthread_attr_t attr; struct sched_param param; param.sched_priority = 0; pthread_attr_init(&attr); pthread_attr_setschedpolicy(&attr, SCHED_OTHER); pthread_attr_setschedparam(&attr, ¶m); if (pthread_create(&plot_thread, NULL, plot_thread_run, NULL)) { perror("pthread_create"); exit(-1); } } #endif // ENABLE_GUI