/* * Copyright (c) 2003, 2004, 2005, 2006, 2007 Lev Walkin . * All rights reserved. * Redistribution and modifications are permitted subject to BSD license. */ #include #include #include /* * Number of bytes left for this structure. * (ctx->left) indicates the number of bytes _transferred_ for the structure. * (size) contains the number of bytes in the buffer passed. */ #define LEFT ((size<(size_t)ctx->left)?size:(size_t)ctx->left) /* * If the subprocessor function returns with an indication that it wants * more data, it may well be a fatal decoding problem, because the * size is constrained by the 's L, even if the buffer size allows * reading more data. * For example, consider the buffer containing the following TLVs: * ... * The TLV length clearly indicates that one byte is expected in V, but * if the V processor returns with "want more data" even if the buffer * contains way more data than the V processor have seen. */ #define SIZE_VIOLATION (ctx->left >= 0 && (size_t)ctx->left <= size) /* * This macro "eats" the part of the buffer which is definitely "consumed", * i.e. was correctly converted into local representation or rightfully skipped. */ #undef ADVANCE #define ADVANCE(num_bytes) do { \ size_t num = num_bytes; \ ptr = ((const char *)ptr) + num;\ size -= num; \ if(ctx->left >= 0) \ ctx->left -= num; \ consumed_myself += num; \ } while(0) /* * Switch to the next phase of parsing. */ #undef NEXT_PHASE #define NEXT_PHASE(ctx) do { \ ctx->phase++; \ ctx->step = 0; \ } while(0) /* * Return a standardized complex structure. */ #undef RETURN #define RETURN(_code) do { \ rval.code = _code; \ rval.consumed = consumed_myself;\ return rval; \ } while(0) /* * See the definitions. */ static int _fetch_present_idx(const void *struct_ptr, int off, int size); static void _set_present_idx(void *sptr, int offset, int size, int pres); /* * Tags are canonically sorted in the tag to member table. */ static int _search4tag(const void *ap, const void *bp) { const asn_TYPE_tag2member_t *a = (const asn_TYPE_tag2member_t *)ap; const asn_TYPE_tag2member_t *b = (const asn_TYPE_tag2member_t *)bp; int a_class = BER_TAG_CLASS(a->el_tag); int b_class = BER_TAG_CLASS(b->el_tag); if(a_class == b_class) { ber_tlv_tag_t a_value = BER_TAG_VALUE(a->el_tag); ber_tlv_tag_t b_value = BER_TAG_VALUE(b->el_tag); if(a_value == b_value) return 0; else if(a_value < b_value) return -1; else return 1; } else if(a_class < b_class) { return -1; } else { return 1; } } /* * The decoder of the CHOICE type. */ asn_dec_rval_t CHOICE_decode_ber(asn_codec_ctx_t *opt_codec_ctx, asn_TYPE_descriptor_t *td, void **struct_ptr, const void *ptr, size_t size, int tag_mode) { /* * Bring closer parts of structure description. */ asn_CHOICE_specifics_t *specs = (asn_CHOICE_specifics_t *)td->specifics; asn_TYPE_member_t *elements = td->elements; /* * Parts of the structure being constructed. */ void *st = *struct_ptr; /* Target structure. */ asn_struct_ctx_t *ctx; /* Decoder context */ ber_tlv_tag_t tlv_tag; /* T from TLV */ ssize_t tag_len; /* Length of TLV's T */ asn_dec_rval_t rval; /* Return code from subparsers */ ssize_t consumed_myself = 0; /* Consumed bytes from ptr */ ASN_DEBUG("Decoding %s as CHOICE", td->name); /* * Create the target structure if it is not present already. */ if(st == 0) { st = *struct_ptr = CALLOC(1, specs->struct_size); if(st == 0) { RETURN(RC_FAIL); } } /* * Restore parsing context. */ ctx = (asn_struct_ctx_t *)((char *)st + specs->ctx_offset); /* * Start to parse where left previously */ switch(ctx->phase) { case 0: /* * PHASE 0. * Check that the set of tags associated with given structure * perfectly fits our expectations. */ if(tag_mode || td->tags_count) { rval = ber_check_tags(opt_codec_ctx, td, ctx, ptr, size, tag_mode, -1, &ctx->left, 0); if(rval.code != RC_OK) { ASN_DEBUG("%s tagging check failed: %d", td->name, rval.code); return rval; } if(ctx->left >= 0) { /* ?Substracted below! */ ctx->left += rval.consumed; } ADVANCE(rval.consumed); } else { ctx->left = -1; } NEXT_PHASE(ctx); ASN_DEBUG("Structure consumes %ld bytes, buffer %ld", (long)ctx->left, (long)size); /* Fall through */ case 1: /* * Fetch the T from TLV. */ tag_len = ber_fetch_tag(ptr, LEFT, &tlv_tag); ASN_DEBUG("In %s CHOICE tag length %d", td->name, (int)tag_len); switch(tag_len) { case 0: if(!SIZE_VIOLATION) RETURN(RC_WMORE); /* Fall through */ case -1: RETURN(RC_FAIL); } do { const asn_TYPE_tag2member_t *t2m; asn_TYPE_tag2member_t key; key.el_tag = tlv_tag; t2m = (const asn_TYPE_tag2member_t *)bsearch(&key, specs->tag2el, specs->tag2el_count, sizeof(specs->tag2el[0]), _search4tag); if(t2m) { /* * Found the element corresponding to the tag. */ NEXT_PHASE(ctx); ctx->step = t2m->el_no; break; } else if(specs->ext_start == -1) { ASN_DEBUG("Unexpected tag %s " "in non-extensible CHOICE %s", ber_tlv_tag_string(tlv_tag), td->name); RETURN(RC_FAIL); } else { /* Skip this tag */ ssize_t skip; ASN_DEBUG("Skipping unknown tag %s", ber_tlv_tag_string(tlv_tag)); skip = ber_skip_length(opt_codec_ctx, BER_TLV_CONSTRUCTED(ptr), (const char *)ptr + tag_len, LEFT - tag_len); switch(skip) { case 0: if(!SIZE_VIOLATION) RETURN(RC_WMORE); /* Fall through */ case -1: RETURN(RC_FAIL); } ADVANCE(skip + tag_len); RETURN(RC_OK); } } while(0); case 2: /* * PHASE 2. * Read in the element. */ do { asn_TYPE_member_t *elm;/* CHOICE's element */ void *memb_ptr; /* Pointer to the member */ void **memb_ptr2; /* Pointer to that pointer */ elm = &elements[ctx->step]; /* * Compute the position of the member inside a structure, * and also a type of containment (it may be contained * as pointer or using inline inclusion). */ if(elm->flags & ATF_POINTER) { /* Member is a pointer to another structure */ memb_ptr2 = (void **)((char *)st + elm->memb_offset); } else { /* * A pointer to a pointer * holding the start of the structure */ memb_ptr = (char *)st + elm->memb_offset; memb_ptr2 = &memb_ptr; } /* Set presence to be able to free it properly at any time */ _set_present_idx(st, specs->pres_offset, specs->pres_size, ctx->step + 1); /* * Invoke the member fetch routine according to member's type */ rval = elm->type->ber_decoder(opt_codec_ctx, elm->type, memb_ptr2, ptr, LEFT, elm->tag_mode); switch(rval.code) { case RC_OK: break; case RC_WMORE: /* More data expected */ if(!SIZE_VIOLATION) { ADVANCE(rval.consumed); RETURN(RC_WMORE); } RETURN(RC_FAIL); case RC_FAIL: /* Fatal error */ RETURN(rval.code); } /* switch(rval) */ ADVANCE(rval.consumed); } while(0); NEXT_PHASE(ctx); /* Fall through */ case 3: ASN_DEBUG("CHOICE %s Leftover: %ld, size = %ld, tm=%d, tc=%d", td->name, (long)ctx->left, (long)size, tag_mode, td->tags_count); if(ctx->left > 0) { /* * The type must be fully decoded * by the CHOICE member-specific decoder. */ RETURN(RC_FAIL); } if(ctx->left == -1 && !(tag_mode || td->tags_count)) { /* * This is an untagged CHOICE. * It doesn't contain nothing * except for the member itself, including all its tags. * The decoding is completed. */ NEXT_PHASE(ctx); break; } /* * Read in the "end of data chunks"'s. */ while(ctx->left < 0) { ssize_t tl; tl = ber_fetch_tag(ptr, LEFT, &tlv_tag); switch(tl) { case 0: if(!SIZE_VIOLATION) RETURN(RC_WMORE); /* Fall through */ case -1: RETURN(RC_FAIL); } /* * Expected <0><0>... */ if(((const uint8_t *)ptr)[0] == 0) { if(LEFT < 2) { if(SIZE_VIOLATION) RETURN(RC_FAIL); else RETURN(RC_WMORE); } else if(((const uint8_t *)ptr)[1] == 0) { /* * Correctly finished with <0><0>. */ ADVANCE(2); ctx->left++; continue; } } else { ASN_DEBUG("Unexpected continuation in %s", td->name); RETURN(RC_FAIL); } /* UNREACHABLE */ } NEXT_PHASE(ctx); case 4: /* No meaningful work here */ break; } RETURN(RC_OK); } asn_enc_rval_t CHOICE_encode_der(asn_TYPE_descriptor_t *td, void *sptr, int tag_mode, ber_tlv_tag_t tag, asn_app_consume_bytes_f *cb, void *app_key) { asn_CHOICE_specifics_t *specs = (asn_CHOICE_specifics_t *)td->specifics; asn_TYPE_member_t *elm; /* CHOICE element */ asn_enc_rval_t erval; void *memb_ptr; size_t computed_size = 0; int present; if(!sptr) _ASN_ENCODE_FAILED; ASN_DEBUG("%s %s as CHOICE", cb?"Encoding":"Estimating", td->name); present = _fetch_present_idx(sptr, specs->pres_offset, specs->pres_size); /* * If the structure was not initialized, it cannot be encoded: * can't deduce what to encode in the choice type. */ if(present <= 0 || present > td->elements_count) { if(present == 0 && td->elements_count == 0) { /* The CHOICE is empty?! */ erval.encoded = 0; _ASN_ENCODED_OK(erval); } _ASN_ENCODE_FAILED; } /* * Seek over the present member of the structure. */ elm = &td->elements[present-1]; if(elm->flags & ATF_POINTER) { memb_ptr = *(void **)((char *)sptr + elm->memb_offset); if(memb_ptr == 0) { if(elm->optional) { erval.encoded = 0; _ASN_ENCODED_OK(erval); } /* Mandatory element absent */ _ASN_ENCODE_FAILED; } } else { memb_ptr = (void *)((char *)sptr + elm->memb_offset); } /* * If the CHOICE itself is tagged EXPLICIT: * T ::= [2] EXPLICIT CHOICE { ... } * Then emit the appropriate tags. */ if(tag_mode == 1 || td->tags_count) { /* * For this, we need to pre-compute the member. */ ssize_t ret; /* Encode member with its tag */ erval = elm->type->der_encoder(elm->type, memb_ptr, elm->tag_mode, elm->tag, 0, 0); if(erval.encoded == -1) return erval; /* Encode CHOICE with parent or my own tag */ ret = der_write_tags(td, erval.encoded, tag_mode, 1, tag, cb, app_key); if(ret == -1) _ASN_ENCODE_FAILED; computed_size += ret; } /* * Encode the single underlying member. */ erval = elm->type->der_encoder(elm->type, memb_ptr, elm->tag_mode, elm->tag, cb, app_key); if(erval.encoded == -1) return erval; ASN_DEBUG("Encoded CHOICE member in %ld bytes (+%ld)", (long)erval.encoded, (long)computed_size); erval.encoded += computed_size; return erval; } ber_tlv_tag_t CHOICE_outmost_tag(const asn_TYPE_descriptor_t *td, const void *ptr, int tag_mode, ber_tlv_tag_t tag) { asn_CHOICE_specifics_t *specs = (asn_CHOICE_specifics_t *)td->specifics; int present; assert(tag_mode == 0); (void)tag_mode; assert(tag == 0); (void)tag; /* * Figure out which CHOICE element is encoded. */ present = _fetch_present_idx(ptr, specs->pres_offset, specs->pres_size); if(present > 0 || present <= td->elements_count) { const asn_TYPE_member_t *elm = &td->elements[present-1]; const void *memb_ptr; if(elm->flags & ATF_POINTER) { memb_ptr = *(const void * const *) ((const char *)ptr + elm->memb_offset); } else { memb_ptr = (const void *) ((const char *)ptr + elm->memb_offset); } return asn_TYPE_outmost_tag(elm->type, memb_ptr, elm->tag_mode, elm->tag); } else { return (ber_tlv_tag_t)-1; } } int CHOICE_constraint(asn_TYPE_descriptor_t *td, const void *sptr, asn_app_constraint_failed_f *ctfailcb, void *app_key) { asn_CHOICE_specifics_t *specs = (asn_CHOICE_specifics_t *)td->specifics; int present; if(!sptr) { _ASN_CTFAIL(app_key, td, sptr, "%s: value not given (%s:%d)", td->name, __FILE__, __LINE__); return -1; } /* * Figure out which CHOICE element is encoded. */ present = _fetch_present_idx(sptr, specs->pres_offset,specs->pres_size); if(present > 0 && present <= td->elements_count) { asn_TYPE_member_t *elm = &td->elements[present-1]; const void *memb_ptr; if(elm->flags & ATF_POINTER) { memb_ptr = *(const void * const *)((const char *)sptr + elm->memb_offset); if(!memb_ptr) { if(elm->optional) return 0; _ASN_CTFAIL(app_key, td, sptr, "%s: mandatory CHOICE element %s absent (%s:%d)", td->name, elm->name, __FILE__, __LINE__); return -1; } } else { memb_ptr = (const void *)((const char *)sptr + elm->memb_offset); } if(elm->memb_constraints) { return elm->memb_constraints(elm->type, memb_ptr, ctfailcb, app_key); } else { int ret = elm->type->check_constraints(elm->type, memb_ptr, ctfailcb, app_key); /* * Cannot inherit it eralier: * need to make sure we get the updated version. */ elm->memb_constraints = elm->type->check_constraints; return ret; } } else { _ASN_CTFAIL(app_key, td, sptr, "%s: no CHOICE element given (%s:%d)", td->name, __FILE__, __LINE__); return -1; } } #undef XER_ADVANCE #define XER_ADVANCE(num_bytes) do { \ size_t num = num_bytes; \ buf_ptr = (const void *)(((const char *)buf_ptr) + num); \ size -= num; \ consumed_myself += num; \ } while(0) /* * Decode the XER (XML) data. */ asn_dec_rval_t CHOICE_decode_xer(asn_codec_ctx_t *opt_codec_ctx, asn_TYPE_descriptor_t *td, void **struct_ptr, const char *opt_mname, const void *buf_ptr, size_t size) { /* * Bring closer parts of structure description. */ asn_CHOICE_specifics_t *specs = (asn_CHOICE_specifics_t *)td->specifics; const char *xml_tag = opt_mname ? opt_mname : td->xml_tag; /* * Parts of the structure being constructed. */ void *st = *struct_ptr; /* Target structure. */ asn_struct_ctx_t *ctx; /* Decoder context */ asn_dec_rval_t rval; /* Return value of a decoder */ ssize_t consumed_myself = 0; /* Consumed bytes from ptr */ int edx; /* Element index */ /* * Create the target structure if it is not present already. */ if(st == 0) { st = *struct_ptr = CALLOC(1, specs->struct_size); if(st == 0) RETURN(RC_FAIL); } /* * Restore parsing context. */ ctx = (asn_struct_ctx_t *)((char *)st + specs->ctx_offset); if(ctx->phase == 0 && !*xml_tag) ctx->phase = 1; /* Skip the outer tag checking phase */ /* * Phases of XER/XML processing: * Phase 0: Check that the opening tag matches our expectations. * Phase 1: Processing body and reacting on closing tag. * Phase 2: Processing inner type. * Phase 3: Only waiting for closing tag. * Phase 4: Skipping unknown extensions. * Phase 5: PHASED OUT */ for(edx = ctx->step; ctx->phase <= 4;) { pxer_chunk_type_e ch_type; /* XER chunk type */ ssize_t ch_size; /* Chunk size */ xer_check_tag_e tcv; /* Tag check value */ asn_TYPE_member_t *elm; /* * Go inside the member. */ if(ctx->phase == 2) { asn_dec_rval_t tmprval; void *memb_ptr; /* Pointer to the member */ void **memb_ptr2; /* Pointer to that pointer */ elm = &td->elements[edx]; if(elm->flags & ATF_POINTER) { /* Member is a pointer to another structure */ memb_ptr2 = (void **)((char *)st + elm->memb_offset); } else { memb_ptr = (char *)st + elm->memb_offset; memb_ptr2 = &memb_ptr; } /* Start/Continue decoding the inner member */ tmprval = elm->type->xer_decoder(opt_codec_ctx, elm->type, memb_ptr2, elm->name, buf_ptr, size); XER_ADVANCE(tmprval.consumed); ASN_DEBUG("XER/CHOICE: itdf: [%s] code=%d", elm->type->name, tmprval.code); if(tmprval.code != RC_OK) RETURN(tmprval.code); assert(_fetch_present_idx(st, specs->pres_offset, specs->pres_size) == 0); /* Record what we've got */ _set_present_idx(st, specs->pres_offset, specs->pres_size, edx + 1); ctx->phase = 3; /* Fall through */ } /* No need to wait for closing tag; special mode. */ if(ctx->phase == 3 && !*xml_tag) { ctx->phase = 5; /* Phase out */ RETURN(RC_OK); } /* * Get the next part of the XML stream. */ ch_size = xer_next_token(&ctx->context, buf_ptr, size, &ch_type); switch(ch_size) { case -1: RETURN(RC_FAIL); case 0: RETURN(RC_WMORE); default: switch(ch_type) { case PXER_COMMENT: /* Got XML comment */ case PXER_TEXT: /* Ignore free-standing text */ XER_ADVANCE(ch_size); /* Skip silently */ continue; case PXER_TAG: break; /* Check the rest down there */ } } tcv = xer_check_tag(buf_ptr, ch_size, xml_tag); ASN_DEBUG("XER/CHOICE checked [%c%c%c%c] vs [%s], tcv=%d", ch_size>0?((const uint8_t *)buf_ptr)[0]:'?', ch_size>1?((const uint8_t *)buf_ptr)[1]:'?', ch_size>2?((const uint8_t *)buf_ptr)[2]:'?', ch_size>3?((const uint8_t *)buf_ptr)[3]:'?', xml_tag, tcv); /* Skip the extensions section */ if(ctx->phase == 4) { ASN_DEBUG("skip_unknown(%d, %ld)", tcv, (long)ctx->left); switch(xer_skip_unknown(tcv, &ctx->left)) { case -1: ctx->phase = 5; RETURN(RC_FAIL); continue; case 1: ctx->phase = 3; /* Fall through */ case 0: XER_ADVANCE(ch_size); continue; case 2: ctx->phase = 3; break; } } switch(tcv) { case XCT_BOTH: break; /* No CHOICE? */ case XCT_CLOSING: if(ctx->phase != 3) break; XER_ADVANCE(ch_size); ctx->phase = 5; /* Phase out */ RETURN(RC_OK); case XCT_OPENING: if(ctx->phase == 0) { XER_ADVANCE(ch_size); ctx->phase = 1; /* Processing body phase */ continue; } /* Fall through */ case XCT_UNKNOWN_OP: case XCT_UNKNOWN_BO: if(ctx->phase != 1) break; /* Really unexpected */ /* * Search which inner member corresponds to this tag. */ for(edx = 0; edx < td->elements_count; edx++) { elm = &td->elements[edx]; tcv = xer_check_tag(buf_ptr,ch_size,elm->name); switch(tcv) { case XCT_BOTH: case XCT_OPENING: /* * Process this member. */ ctx->step = edx; ctx->phase = 2; break; case XCT_UNKNOWN_OP: case XCT_UNKNOWN_BO: continue; default: edx = td->elements_count; break; /* Phase out */ } break; } if(edx != td->elements_count) continue; /* It is expected extension */ if(specs->ext_start != -1) { ASN_DEBUG("Got anticipated extension"); /* * Check for (XCT_BOTH or XCT_UNKNOWN_BO) * By using a mask. Only record a pure * tags. */ if(tcv & XCT_CLOSING) { /* Found without body */ ctx->phase = 3; /* Terminating */ } else { ctx->left = 1; ctx->phase = 4; /* Skip ...'s */ } XER_ADVANCE(ch_size); continue; } /* Fall through */ default: break; } ASN_DEBUG("Unexpected XML tag [%c%c%c%c] in CHOICE [%s]" " (ph=%d, tag=%s)", ch_size>0?((const uint8_t *)buf_ptr)[0]:'?', ch_size>1?((const uint8_t *)buf_ptr)[1]:'?', ch_size>2?((const uint8_t *)buf_ptr)[2]:'?', ch_size>3?((const uint8_t *)buf_ptr)[3]:'?', td->name, ctx->phase, xml_tag); break; } ctx->phase = 5; /* Phase out, just in case */ RETURN(RC_FAIL); } asn_enc_rval_t CHOICE_encode_xer(asn_TYPE_descriptor_t *td, void *sptr, int ilevel, enum xer_encoder_flags_e flags, asn_app_consume_bytes_f *cb, void *app_key) { asn_CHOICE_specifics_t *specs=(asn_CHOICE_specifics_t *)td->specifics; asn_enc_rval_t er; int present; if(!sptr) _ASN_ENCODE_FAILED; /* * Figure out which CHOICE element is encoded. */ present = _fetch_present_idx(sptr, specs->pres_offset,specs->pres_size); if(present <= 0 || present > td->elements_count) { _ASN_ENCODE_FAILED; } else { asn_enc_rval_t tmper; asn_TYPE_member_t *elm = &td->elements[present-1]; void *memb_ptr; const char *mname = elm->name; unsigned int mlen = strlen(mname); if(elm->flags & ATF_POINTER) { memb_ptr = *(void **)((char *)sptr + elm->memb_offset); if(!memb_ptr) _ASN_ENCODE_FAILED; } else { memb_ptr = (void *)((char *)sptr + elm->memb_offset); } er.encoded = 0; if(!(flags & XER_F_CANONICAL)) _i_ASN_TEXT_INDENT(1, ilevel); _ASN_CALLBACK3("<", 1, mname, mlen, ">", 1); tmper = elm->type->xer_encoder(elm->type, memb_ptr, ilevel + 1, flags, cb, app_key); if(tmper.encoded == -1) return tmper; _ASN_CALLBACK3("", 1); er.encoded += 5 + (2 * mlen) + tmper.encoded; } if(!(flags & XER_F_CANONICAL)) _i_ASN_TEXT_INDENT(1, ilevel - 1); _ASN_ENCODED_OK(er); cb_failed: _ASN_ENCODE_FAILED; } asn_dec_rval_t CHOICE_decode_uper(asn_codec_ctx_t *opt_codec_ctx, asn_TYPE_descriptor_t *td, asn_per_constraints_t *constraints, void **sptr, asn_per_data_t *pd) { asn_CHOICE_specifics_t *specs = (asn_CHOICE_specifics_t *)td->specifics; asn_dec_rval_t rv; asn_per_constraint_t *ct; asn_TYPE_member_t *elm; /* CHOICE's element */ void *memb_ptr; void **memb_ptr2; void *st = *sptr; int value; if(_ASN_STACK_OVERFLOW_CHECK(opt_codec_ctx)) _ASN_DECODE_FAILED; /* * Create the target structure if it is not present already. */ if(!st) { st = *sptr = CALLOC(1, specs->struct_size); if(!st) _ASN_DECODE_FAILED; } if(constraints) ct = &constraints->value; else if(td->per_constraints) ct = &td->per_constraints->value; else ct = 0; if(ct && ct->flags & APC_EXTENSIBLE) { value = per_get_few_bits(pd, 1); if(value < 0) _ASN_DECODE_STARVED; if(value) ct = 0; /* Not restricted */ } if(ct && ct->range_bits >= 0) { value = per_get_few_bits(pd, ct->range_bits); if(value < 0) _ASN_DECODE_STARVED; ASN_DEBUG("CHOICE %s got index %d in range %d", td->name, value, ct->range_bits); if(value > ct->upper_bound) _ASN_DECODE_FAILED; } else { if(specs->ext_start == -1) _ASN_DECODE_FAILED; value = uper_get_nsnnwn(pd); if(value < 0) _ASN_DECODE_STARVED; value += specs->ext_start; if(value >= td->elements_count) _ASN_DECODE_FAILED; } /* Adjust if canonical order is different from natural order */ if(specs->canonical_order) value = specs->canonical_order[value]; /* Set presence to be able to free it later */ _set_present_idx(st, specs->pres_offset, specs->pres_size, value + 1); elm = &td->elements[value]; if(elm->flags & ATF_POINTER) { /* Member is a pointer to another structure */ memb_ptr2 = (void **)((char *)st + elm->memb_offset); } else { memb_ptr = (char *)st + elm->memb_offset; memb_ptr2 = &memb_ptr; } ASN_DEBUG("Discovered CHOICE %s encodes %s", td->name, elm->name); if(ct && ct->range_bits >= 0) { rv = elm->type->uper_decoder(opt_codec_ctx, elm->type, elm->per_constraints, memb_ptr2, pd); } else { rv = uper_open_type_get(opt_codec_ctx, elm->type, elm->per_constraints, memb_ptr2, pd); } if(rv.code != RC_OK) ASN_DEBUG("Failed to decode %s in %s (CHOICE) %d", elm->name, td->name, rv.code); return rv; } asn_enc_rval_t CHOICE_encode_uper(asn_TYPE_descriptor_t *td, asn_per_constraints_t *constraints, void *sptr, asn_per_outp_t *po) { asn_CHOICE_specifics_t *specs = (asn_CHOICE_specifics_t *)td->specifics; asn_TYPE_member_t *elm; /* CHOICE's element */ asn_per_constraint_t *ct; void *memb_ptr; int present; int present_enc; if(!sptr) _ASN_ENCODE_FAILED; ASN_DEBUG("Encoding %s as CHOICE", td->name); if(constraints) ct = &constraints->value; else if(td->per_constraints) ct = &td->per_constraints->value; else ct = 0; present = _fetch_present_idx(sptr, specs->pres_offset, specs->pres_size); /* * If the structure was not initialized properly, it cannot be encoded: * can't deduce what to encode in the choice type. */ if(present <= 0 || present > td->elements_count) _ASN_ENCODE_FAILED; else present--; ASN_DEBUG("Encoding %s CHOICE element %d", td->name, present); /* Adjust if canonical order is different from natural order */ if(specs->canonical_order) present_enc = specs->canonical_order[present]; else present_enc = present; if(ct && ct->range_bits >= 0) { if(present_enc < ct->lower_bound || present_enc > ct->upper_bound) { if(ct->flags & APC_EXTENSIBLE) { if(per_put_few_bits(po, 1, 1)) _ASN_ENCODE_FAILED; } else { _ASN_ENCODE_FAILED; } ct = 0; } } if(ct && ct->flags & APC_EXTENSIBLE) if(per_put_few_bits(po, 0, 1)) _ASN_ENCODE_FAILED; elm = &td->elements[present]; if(elm->flags & ATF_POINTER) { /* Member is a pointer to another structure */ memb_ptr = *(void **)((char *)sptr + elm->memb_offset); if(!memb_ptr) _ASN_ENCODE_FAILED; } else { memb_ptr = (char *)sptr + elm->memb_offset; } if(ct && ct->range_bits >= 0) { if(per_put_few_bits(po, present_enc, ct->range_bits)) _ASN_ENCODE_FAILED; return elm->type->uper_encoder(elm->type, elm->per_constraints, memb_ptr, po); } else { asn_enc_rval_t rval; if(specs->ext_start == -1) _ASN_ENCODE_FAILED; if(uper_put_nsnnwn(po, present_enc - specs->ext_start)) _ASN_ENCODE_FAILED; if(uper_open_type_put(elm->type, elm->per_constraints, memb_ptr, po)) _ASN_ENCODE_FAILED; rval.encoded = 0; _ASN_ENCODED_OK(rval); } } int CHOICE_print(asn_TYPE_descriptor_t *td, const void *sptr, int ilevel, asn_app_consume_bytes_f *cb, void *app_key) { asn_CHOICE_specifics_t *specs = (asn_CHOICE_specifics_t *)td->specifics; int present; if(!sptr) return (cb("", 8, app_key) < 0) ? -1 : 0; /* * Figure out which CHOICE element is encoded. */ present = _fetch_present_idx(sptr, specs->pres_offset,specs->pres_size); /* * Print that element. */ if(present > 0 && present <= td->elements_count) { asn_TYPE_member_t *elm = &td->elements[present-1]; const void *memb_ptr; if(elm->flags & ATF_POINTER) { memb_ptr = *(const void * const *)((const char *)sptr + elm->memb_offset); if(!memb_ptr) return (cb("", 8, app_key) < 0) ? -1 : 0; } else { memb_ptr = (const void *)((const char *)sptr + elm->memb_offset); } /* Print member's name and stuff */ if(0) { if(cb(elm->name, strlen(elm->name), app_key) < 0 || cb(": ", 2, app_key) < 0) return -1; } return elm->type->print_struct(elm->type, memb_ptr, ilevel, cb, app_key); } else { return (cb("", 8, app_key) < 0) ? -1 : 0; } } void CHOICE_free(asn_TYPE_descriptor_t *td, void *ptr, int contents_only) { asn_CHOICE_specifics_t *specs = (asn_CHOICE_specifics_t *)td->specifics; int present; if(!td || !ptr) return; ASN_DEBUG("Freeing %s as CHOICE", td->name); /* * Figure out which CHOICE element is encoded. */ present = _fetch_present_idx(ptr, specs->pres_offset, specs->pres_size); /* * Free that element. */ if(present > 0 && present <= td->elements_count) { asn_TYPE_member_t *elm = &td->elements[present-1]; void *memb_ptr; if(elm->flags & ATF_POINTER) { memb_ptr = *(void **)((char *)ptr + elm->memb_offset); if(memb_ptr) ASN_STRUCT_FREE(*elm->type, memb_ptr); } else { memb_ptr = (void *)((char *)ptr + elm->memb_offset); ASN_STRUCT_FREE_CONTENTS_ONLY(*elm->type, memb_ptr); } } if(!contents_only) { FREEMEM(ptr); } } /* * The following functions functions offer protection against -fshort-enums, * compatible with little- and big-endian machines. * If assertion is triggered, either disable -fshort-enums, or add an entry * here with the ->pres_size of your target stracture. * Unless the target structure is packed, the ".present" member * is guaranteed to be aligned properly. ASN.1 compiler itself does not * produce packed code. */ static int _fetch_present_idx(const void *struct_ptr, int pres_offset, int pres_size) { const void *present_ptr; int present; present_ptr = ((const char *)struct_ptr) + pres_offset; switch(pres_size) { case sizeof(int): present = *(const int *)present_ptr; break; case sizeof(short): present = *(const short *)present_ptr; break; case sizeof(char): present = *(const char *)present_ptr; break; default: /* ANSI C mandates enum to be equivalent to integer */ assert(pres_size != sizeof(int)); return 0; /* If not aborted, pass back safe value */ } return present; } static void _set_present_idx(void *struct_ptr, int pres_offset, int pres_size, int present) { void *present_ptr; present_ptr = ((char *)struct_ptr) + pres_offset; switch(pres_size) { case sizeof(int): *(int *)present_ptr = present; break; case sizeof(short): *(short *)present_ptr = present; break; case sizeof(char): *(char *)present_ptr = present; break; default: /* ANSI C mandates enum to be equivalent to integer */ assert(pres_size != sizeof(int)); } }