/** * Copyright 2013-2021 Software Radio Systems Limited * * This file is part of srsRAN. * * srsRAN is free software: you can redistribute it and/or modify * it under the terms of the GNU Affero General Public License as * published by the Free Software Foundation, either version 3 of * the License, or (at your option) any later version. * * srsRAN is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Affero General Public License for more details. * * A copy of the GNU Affero General Public License can be found in * the LICENSE file in the top-level directory of this distribution * and at http://www.gnu.org/licenses/. * */ #include "srsenb/hdr/stack/mac/sched.h" #include "srsenb/hdr/stack/mac/sched_carrier.h" #include "srsenb/hdr/stack/mac/sched_ue.h" #include #include #include #include #include #include "srsran/interfaces/sched_interface.h" #include "srsran/phy/utils/debug.h" #include "sched_common_test_suite.h" #include "sched_test_common.h" #include "sched_test_utils.h" #include "srsran/common/common_lte.h" #include "srsran/common/test_common.h" namespace srsenb { uint32_t seed = std::chrono::system_clock::now().time_since_epoch().count(); struct ue_stats_t { uint32_t nof_dl_rbs = 0; uint32_t nof_ul_rbs = 0; uint64_t nof_dl_bytes = 0; uint64_t nof_ul_bytes = 0; uint32_t nof_ttis = 0; }; std::map ue_stats; ue_stats_t ue_tot_stats; /******************* * Logging * *******************/ /// RAII style class that prints the test diagnostic info on destruction. class sched_diagnostic_printer { public: explicit sched_diagnostic_printer(srsran::log_sink_spy& s) : s(s) {} ~sched_diagnostic_printer() { auto& logger = srslog::fetch_basic_logger("TEST"); logger.info("UE stats:"); logger.info("all: {DL/UL RBs: %" PRIu32 "/%" PRIu32 ", DL/UL bitrates: %0.2f/%0.2f Mbps}", ue_tot_stats.nof_dl_rbs, ue_tot_stats.nof_ul_rbs, ue_tot_stats.nof_dl_bytes * 8 * 0.001 / ue_tot_stats.nof_ttis, ue_tot_stats.nof_ul_bytes * 8 * 0.001 / ue_tot_stats.nof_ttis); for (const auto& e : ue_stats) { logger.info("0x%x: {DL/UL RBs: %" PRIu32 "/%" PRIu32 ", DL/UL bitrates: %0.2f/%0.2f Mbps}", e.first, e.second.nof_dl_rbs, e.second.nof_ul_rbs, e.second.nof_dl_bytes * 8 * 0.001 / e.second.nof_ttis, e.second.nof_ul_bytes * 8 * 0.001 / e.second.nof_ttis); } logger.info("Number of assertion warnings: %u", s.get_warning_counter()); logger.info("Number of assertion errors: %u", s.get_error_counter()); logger.info("This was the seed: %u", seed); srslog::flush(); } private: srsran::log_sink_spy& s; }; /******************* * Dummies * *******************/ constexpr uint32_t CARRIER_IDX = 0; // Designed for testing purposes struct sched_tester : public srsenb::common_sched_tester { struct tester_user_results { srsenb::ul_harq_proc ul_harq; }; struct sched_tti_data { std::map ue_data; ///< stores buffer state of each user tester_user_results total_ues; ///< stores combined UL/DL buffer state }; // sched results sched_tti_data tti_data; int rem_user(uint16_t rnti) override; int test_harqs(); private: void new_test_tti() override; void before_sched() override; int process_results() override; int update_ue_stats(); }; int sched_tester::rem_user(uint16_t rnti) { tti_data.ue_data.erase(rnti); return common_sched_tester::rem_user(rnti); } void sched_tester::new_test_tti() { common_sched_tester::new_test_tti(); // NOTE: make a local copy, since some of these variables may be cleared during scheduling tti_data.ue_data.clear(); tti_data.total_ues = tester_user_results(); } void sched_tester::before_sched() { // check pending data buffers for (auto& it : ue_db) { uint16_t rnti = it.first; srsenb::sched_ue* user = it.second.get(); tester_user_results d; tti_data.ue_data.insert(std::make_pair(rnti, d)); // NOTE: ACK might have just cleared the harq for tti_info.tti_params.tti_tx_ul tti_data.ue_data[rnti].ul_harq = *user->get_ul_harq(srsenb::to_tx_ul(tti_rx), CARRIER_IDX); } } int sched_tester::process_results() { const srsenb::cc_sched_result* cc_result = sched_results.get_cc(tti_rx, CARRIER_IDX); srsenb::sf_output_res_t sf_out{sched_cell_params, tti_rx, tti_info.ul_sched_result, tti_info.dl_sched_result}; // Common tests TESTASSERT(test_pdcch_collisions(sf_out, CARRIER_IDX, &cc_result->pdcch_mask) == SRSRAN_SUCCESS); TESTASSERT(test_dci_content_common(sf_out, CARRIER_IDX) == SRSRAN_SUCCESS); TESTASSERT(test_sib_scheduling(sf_out, CARRIER_IDX) == SRSRAN_SUCCESS); TESTASSERT(test_pusch_collisions(sf_out, CARRIER_IDX, &cc_result->ul_mask) == SRSRAN_SUCCESS); TESTASSERT(test_pdsch_collisions(sf_out, CARRIER_IDX, &cc_result->dl_mask) == SRSRAN_SUCCESS); // UE dedicated tests TESTASSERT(run_ue_ded_tests_and_update_ctxt(sf_out) == SRSRAN_SUCCESS); TESTASSERT(test_harqs() == SRSRAN_SUCCESS); TESTASSERT(update_ue_stats() == SRSRAN_SUCCESS); return SRSRAN_SUCCESS; } int sched_tester::test_harqs() { /* check consistency of DL harq procedures and allocations */ for (uint32_t i = 0; i < tti_info.dl_sched_result[CARRIER_IDX].data.size(); ++i) { const auto& data = tti_info.dl_sched_result[CARRIER_IDX].data[i]; uint32_t h_id = data.dci.pid; uint16_t rnti = data.dci.rnti; const srsenb::dl_harq_proc& h = ue_db[rnti]->get_dl_harq(h_id, CARRIER_IDX); CONDERROR(h.get_tti() != srsenb::to_tx_dl(tti_rx), "The scheduled DL harq pid=%d does not a valid tti=%u", h_id, srsenb::to_tx_dl(tti_rx).to_uint()); CONDERROR(h.get_n_cce() != data.dci.location.ncce, "Harq DCI location does not match with result"); } /* Check PHICH allocations */ for (uint32_t i = 0; i < tti_info.ul_sched_result[CARRIER_IDX].phich.size(); ++i) { const auto& phich = tti_info.ul_sched_result[CARRIER_IDX].phich[i]; const auto& hprev = tti_data.ue_data[phich.rnti].ul_harq; const auto* h = ue_db[phich.rnti]->get_ul_harq(srsenb::to_tx_ul(tti_rx), CARRIER_IDX); CONDERROR(not hprev.has_pending_phich(), "Alloc PHICH did not have any pending ack"); bool maxretx_flag = hprev.nof_retx(0) + 1 >= hprev.max_nof_retx(); if (phich.phich == sched_interface::ul_sched_phich_t::ACK) { // The harq can be either ACKed or Resumed if (not hprev.is_empty()) { // In case it was resumed CONDERROR(h == nullptr or h->is_empty(), "Cannot resume empty UL harq"); for (uint32_t j = 0; j < tti_info.ul_sched_result[CARRIER_IDX].pusch.size(); ++j) { auto& pusch = tti_info.ul_sched_result[CARRIER_IDX].pusch[j]; CONDERROR(pusch.dci.rnti == phich.rnti, "Cannot send PHICH::ACK for same harq that got UL grant."); } } } else { CONDERROR(h->get_pending_data() == 0 and !maxretx_flag, "NACKed harq has no pending data"); } } return SRSRAN_SUCCESS; } int sched_tester::update_ue_stats() { // update ue stats with number of allocated UL PRBs for (uint32_t i = 0; i < tti_info.ul_sched_result[CARRIER_IDX].pusch.size(); ++i) { const auto& pusch = tti_info.ul_sched_result[CARRIER_IDX].pusch[i]; uint32_t L, RBstart; srsran_ra_type2_from_riv(pusch.dci.type2_alloc.riv, &L, &RBstart, sched_cell_params[CARRIER_IDX].cfg.cell.nof_prb, sched_cell_params[CARRIER_IDX].cfg.cell.nof_prb); ue_stats[pusch.dci.rnti].nof_ul_rbs += L; ue_stats[pusch.dci.rnti].nof_ul_bytes += pusch.tbs; ue_tot_stats.nof_ul_rbs += L; ue_tot_stats.nof_ul_bytes += pusch.tbs; } // update ue stats with number of DL RB allocations srsran::bounded_bitset<100, true> alloc_mask(sched_cell_params[CARRIER_IDX].cfg.cell.nof_prb); for (uint32_t i = 0; i < tti_info.dl_sched_result[CARRIER_IDX].data.size(); ++i) { auto& data = tti_info.dl_sched_result[CARRIER_IDX].data[i]; TESTASSERT(srsenb::extract_dl_prbmask(sched_cell_params[CARRIER_IDX].cfg.cell, tti_info.dl_sched_result[CARRIER_IDX].data[i].dci, alloc_mask) == SRSRAN_SUCCESS); ue_stats[data.dci.rnti].nof_dl_rbs += alloc_mask.count(); ue_stats[data.dci.rnti].nof_dl_bytes += data.tbs[0] + data.tbs[1]; ue_tot_stats.nof_dl_rbs += alloc_mask.count(); ue_tot_stats.nof_dl_bytes += data.tbs[0] + data.tbs[1]; } for (auto& u : ue_db) { ue_stats[u.first].nof_ttis++; } ue_tot_stats.nof_ttis++; return SRSRAN_SUCCESS; } int test_scheduler_rand(srsenb::sched_sim_events sim) { // Create classes sched_tester tester; srsenb::sched my_sched; tester.sim_cfg(std::move(sim.sim_args)); TESTASSERT(tester.test_next_ttis(sim.tti_events) == SRSRAN_SUCCESS); return SRSRAN_SUCCESS; } template T pick_random_uniform(std::initializer_list v) { return *(v.begin() + std::uniform_int_distribution{0, v.size() - 1}(srsenb::get_rand_gen())); } sched_sim_events rand_sim_params(uint32_t nof_ttis) { auto boolean_dist = []() { return std::uniform_int_distribution<>{0, 1}(srsenb::get_rand_gen()); }; sched_sim_events sim_gen; uint32_t max_conn_dur = 10000, min_conn_dur = 500; float P_ul_sr = srsenb::randf() * 0.5, P_dl = srsenb::randf() * 0.5; float P_prach = 0.99f; // 0.1f + randf()*0.3f; float ul_sr_exps[] = {1, 4}; // log rand float dl_data_exps[] = {1, 4}; // log rand uint32_t max_nof_users = 5; std::uniform_int_distribution<> connection_dur_dist(min_conn_dur, max_conn_dur); std::uniform_int_distribution dist_prb_idx(0, 5); uint32_t prb_idx = dist_prb_idx(srsenb::get_rand_gen()); uint32_t nof_prb = srsran::lte_cell_nof_prbs[prb_idx]; printf("Number of PRBs is %u\n", nof_prb); sched_sim_event_generator generator; sim_gen.sim_args.cell_cfg = {generate_default_cell_cfg(nof_prb)}; sim_gen.sim_args.cell_cfg[0].target_pucch_ul_sinr = pick_random_uniform({10, 15, 20, -1}); sim_gen.sim_args.cell_cfg[0].target_pusch_ul_sinr = pick_random_uniform({10, 15, 20, -1}); sim_gen.sim_args.cell_cfg[0].enable_phr_handling = false; sim_gen.sim_args.cell_cfg[0].min_phr_thres = 0; sim_gen.sim_args.default_ue_sim_cfg.ue_cfg = generate_default_ue_cfg(); sim_gen.sim_args.default_ue_sim_cfg.periodic_cqi = true; sim_gen.sim_args.default_ue_sim_cfg.ue_cfg.maxharq_tx = std::uniform_int_distribution<>{1, 5}(srsenb::get_rand_gen()); sim_gen.sim_args.default_ue_sim_cfg.prob_dl_ack_mask.resize(sim_gen.sim_args.default_ue_sim_cfg.ue_cfg.maxharq_tx, 0.5); sim_gen.sim_args.default_ue_sim_cfg.prob_dl_ack_mask.back() = 1; sim_gen.sim_args.default_ue_sim_cfg.prob_ul_ack_mask.resize(sim_gen.sim_args.default_ue_sim_cfg.ue_cfg.maxharq_tx, 0.5); sim_gen.sim_args.default_ue_sim_cfg.prob_ul_ack_mask.back() = 1; sim_gen.sim_args.default_ue_sim_cfg.ue_cfg.measgap_period = pick_random_uniform({0, 40, 80}); sim_gen.sim_args.default_ue_sim_cfg.ue_cfg.measgap_offset = std::uniform_int_distribution{ 0, std::max(sim_gen.sim_args.default_ue_sim_cfg.ue_cfg.measgap_period, 1u) - 1}(srsenb::get_rand_gen()); sim_gen.sim_args.default_ue_sim_cfg.ue_cfg.pucch_cfg.n_pucch_sr = std::uniform_int_distribution{0, 2047}(srsenb::get_rand_gen()); sim_gen.sim_args.start_tti = 0; sim_gen.sim_args.sched_args.pdsch_mcs = boolean_dist() ? -1 : std::uniform_int_distribution<>{0, 24}(srsenb::get_rand_gen()); sim_gen.sim_args.sched_args.pusch_mcs = boolean_dist() ? -1 : std::uniform_int_distribution<>{0, 24}(srsenb::get_rand_gen()); sim_gen.sim_args.sched_args.min_aggr_level = std::uniform_int_distribution<>{0, 3}(srsenb::get_rand_gen()); generator.tti_events.resize(nof_ttis); for (uint32_t tti = 0; tti < nof_ttis; ++tti) { for (auto& u : generator.current_users) { uint32_t rnti = u.first; if (srsenb::randf() < P_ul_sr) { float exp = ul_sr_exps[0] + srsenb::randf() * (ul_sr_exps[1] - ul_sr_exps[0]); generator.add_ul_data(rnti, (uint32_t)pow(10, exp)); } if (srsenb::randf() < P_dl) { float exp = dl_data_exps[0] + srsenb::randf() * (dl_data_exps[1] - dl_data_exps[0]); generator.add_dl_data(rnti, (uint32_t)pow(10, exp)); } } // may add new user (For now, we only support one UE per PRACH) bool is_prach_tti = srsran_prach_tti_opportunity_config_fdd(sim_gen.sim_args.cell_cfg[CARRIER_IDX].prach_config, tti, -1); if (is_prach_tti and generator.current_users.size() < max_nof_users and srsenb::randf() < P_prach) { generator.add_new_default_user(connection_dur_dist(srsenb::get_rand_gen()), sim_gen.sim_args.default_ue_sim_cfg); } generator.step_tti(); } sim_gen.tti_events = std::move(generator.tti_events); return sim_gen; } } // namespace srsenb int main() { // Setup seed srsenb::set_randseed(srsenb::seed); printf("This is the chosen seed: %u\n", srsenb::seed); // Setup the log spy to intercept error and warning log entries. if (!srslog::install_custom_sink( srsran::log_sink_spy::name(), std::unique_ptr(new srsran::log_sink_spy(srslog::get_default_log_formatter())))) { return SRSRAN_ERROR; } auto* spy = static_cast(srslog::find_sink(srsran::log_sink_spy::name())); if (!spy) { return SRSRAN_ERROR; } auto& mac_log = srslog::fetch_basic_logger("MAC"); mac_log.set_level(srslog::basic_levels::debug); auto& test_log = srslog::fetch_basic_logger("TEST", *spy, false); test_log.set_level(srslog::basic_levels::info); // Start the log backend. srslog::init(); uint32_t N_runs = 1, nof_ttis = 10240 + 10; srsenb::sched_diagnostic_printer printer(*spy); for (uint32_t n = 0; n < N_runs; ++n) { printf("Sim run number: %u\n", n + 1); srsenb::sched_sim_events sim = srsenb::rand_sim_params(nof_ttis); TESTASSERT(srsenb::test_scheduler_rand(std::move(sim)) == SRSRAN_SUCCESS); } return 0; }