/** * Copyright 2013-2021 Software Radio Systems Limited * * This file is part of srsLTE. * * srsLTE is free software: you can redistribute it and/or modify * it under the terms of the GNU Affero General Public License as * published by the Free Software Foundation, either version 3 of * the License, or (at your option) any later version. * * srsLTE is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Affero General Public License for more details. * * A copy of the GNU Affero General Public License can be found in * the LICENSE file in the top-level directory of this distribution * and at http://www.gnu.org/licenses/. * */ #include "srsran/common/block_queue.h" #include "srsran/common/crash_handler.h" #include "srsran/common/rlc_pcap.h" #include "srsran/common/test_common.h" #include "srsran/common/threads.h" #include "srsran/upper/rlc.h" #include #include #include #include #include #include #include #define LOG_HEX_LIMIT (-1) #define PCAP_CRNTI (0x1001) #define PCAP_TTI (666) #include "srsran/common/mac_pcap.h" #include "srsran/mac/mac_sch_pdu_nr.h" static std::unique_ptr pcap_handle = nullptr; int write_pdu_to_pcap(const bool is_dl, const uint32_t lcid, const uint8_t* payload, const uint32_t len) { if (pcap_handle) { srsran::byte_buffer_t tx_buffer; srsran::mac_sch_pdu_nr tx_pdu; tx_pdu.init_tx(&tx_buffer, len + 10); tx_pdu.add_sdu(lcid, payload, len); tx_pdu.pack(); if (is_dl) { pcap_handle->write_dl_crnti_nr(tx_buffer.msg, tx_buffer.N_bytes, PCAP_CRNTI, true, PCAP_TTI); } else { pcap_handle->write_ul_crnti_nr(tx_buffer.msg, tx_buffer.N_bytes, PCAP_CRNTI, true, PCAP_TTI); } return SRSRAN_SUCCESS; } return SRSRAN_ERROR; } using namespace std; using namespace srsue; using namespace srsran; namespace bpo = boost::program_options; #define MIN_SDU_SIZE (5) #define MAX_SDU_SIZE (1500) typedef struct { std::string rat; std::string mode; int32_t sdu_size; uint32_t test_duration_sec; float pdu_drop_rate; float pdu_cut_rate; float pdu_duplicate_rate; uint32_t sdu_gen_delay_usec; uint32_t pdu_tx_delay_usec; uint32_t log_level; bool single_tx; bool write_pcap; uint32_t avg_opp_size; bool random_opp; bool zero_seed; uint32_t nof_pdu_tti; uint32_t max_retx; } stress_test_args_t; void parse_args(stress_test_args_t* args, int argc, char* argv[]) { // Command line only options bpo::options_description general("General options"); general.add_options()("help,h", "Produce help message")("version,v", "Print version information and exit"); // clang-format off // Command line or config file options bpo::options_description common("Configuration options"); common.add_options() ("rat", bpo::value(&args->rat)->default_value("LTE"), "The RLC version to use (LTE/NR)") ("mode", bpo::value(&args->mode)->default_value("AM"), "Whether to test RLC acknowledged or unacknowledged mode (AM/UM for LTE) (UM6/UM12 for NR)") ("duration", bpo::value(&args->test_duration_sec)->default_value(5), "Duration (sec)") ("sdu_size", bpo::value(&args->sdu_size)->default_value(-1), "Size of SDUs (-1 means random)") ("random_opp", bpo::value(&args->random_opp)->default_value(true), "Whether to generate random MAC opportunities") ("avg_opp_size", bpo::value(&args->avg_opp_size)->default_value(1505), "Size of the MAC opportunity (if not random)") ("sdu_gen_delay", bpo::value(&args->sdu_gen_delay_usec)->default_value(0), "SDU generation delay (usec)") ("pdu_tx_delay", bpo::value(&args->pdu_tx_delay_usec)->default_value(0), "Delay in MAC for transfering PDU from tx'ing RLC to rx'ing RLC (usec)") ("pdu_drop_rate", bpo::value(&args->pdu_drop_rate)->default_value(0.1), "Rate at which RLC PDUs are dropped") ("pdu_cut_rate", bpo::value(&args->pdu_cut_rate)->default_value(0.0), "Rate at which RLC PDUs are chopped in length") ("pdu_duplicate_rate", bpo::value(&args->pdu_duplicate_rate)->default_value(0.0), "Rate at which RLC PDUs are duplicated") ("loglevel", bpo::value(&args->log_level)->default_value((int)srslog::basic_levels::debug), "Log level (1=Error,2=Warning,3=Info,4=Debug)") ("singletx", bpo::value(&args->single_tx)->default_value(false), "If set to true, only one node is generating data") ("pcap", bpo::value(&args->write_pcap)->default_value(false), "Whether to write all RLC PDU to PCAP file") ("zeroseed", bpo::value(&args->zero_seed)->default_value(false), "Whether to initialize random seed to zero") ("max_retx", bpo::value(&args->max_retx)->default_value(32), "Maximum number of RLC retransmission attempts") ("nof_pdu_tti", bpo::value(&args->nof_pdu_tti)->default_value(1), "Number of PDUs processed in a TTI"); // clang-format on // these options are allowed on the command line bpo::options_description cmdline_options; cmdline_options.add(common).add(general); // parse the command line and store result in vm bpo::variables_map vm; bpo::store(bpo::command_line_parser(argc, argv).options(cmdline_options).run(), vm); bpo::notify(vm); // help option was given - print usage and exit if (vm.count("help") > 0) { cout << "Usage: " << argv[0] << " [OPTIONS] config_file" << endl << endl; cout << common << endl << general << endl; exit(0); } if (args->log_level > 4) { args->log_level = 4; printf("Set log level to %d (%s)\n", args->log_level, srslog::basic_level_to_string(static_cast(args->log_level))); } // convert mode to upper case for (auto& c : args->mode) { c = toupper(c); } } class mac_dummy : public srsran::thread { public: mac_dummy(rlc_interface_mac* rlc1_, rlc_interface_mac* rlc2_, stress_test_args_t args_, uint32_t lcid_, timer_handler* timers_, rlc_pcap* pcap_, uint32_t seed_) : run_enable(true), rlc1(rlc1_), rlc2(rlc2_), args(args_), pcap(pcap_), lcid(lcid_), timers(timers_), logger(srslog::fetch_basic_logger("MAC", false)), thread("MAC_DUMMY"), real_dist(0.0, 1.0), mt19937(seed_) { logger.set_level(static_cast(args.log_level)); logger.set_hex_dump_max_size(LOG_HEX_LIMIT); } void stop() { run_enable = false; wait_thread_finish(); } void enqueue_task(srsran::move_task_t task) { pending_tasks.push(std::move(task)); } private: void run_tx_tti(rlc_interface_mac* tx_rlc, rlc_interface_mac* rx_rlc, std::vector& pdu_list) { // Generate A number of MAC PDUs for (uint32_t i = 0; i < args.nof_pdu_tti; i++) { // Create PDU unique buffer unique_byte_buffer_t pdu = srsran::make_byte_buffer(); if (!pdu) { printf("Fatal Error: Could not allocate PDU in mac_reader::run_thread\n"); exit(-1); } // Get MAC PDU size float factor = 1.0f; if (args.random_opp) { factor = 0.5f + real_dist(mt19937); } int opp_size = static_cast(args.avg_opp_size * factor); // Request data to transmit uint32_t buf_state = tx_rlc->get_buffer_state(lcid); if (buf_state > 0) { int read = tx_rlc->read_pdu(lcid, pdu->msg, opp_size); pdu->N_bytes = read; // Push PDU in the list pdu_list.push_back(std::move(pdu)); } } } void run_rx_tti(rlc_interface_mac* tx_rlc, rlc_interface_mac* rx_rlc, bool is_dl, std::vector& pdu_list) { // Sleep if necessary if (args.pdu_tx_delay_usec > 0) { std::this_thread::sleep_for(std::chrono::microseconds(args.pdu_tx_delay_usec)); } auto it = pdu_list.begin(); // PDU iterator bool skip_action = false; // Avoid discarding a duplicated or duplicating a discarded while (it != pdu_list.end()) { // Get PDU unique buffer unique_byte_buffer_t& pdu = *it; // Drop float rnd = real_dist(mt19937); if (std::isnan(rnd) || (((rnd > args.pdu_drop_rate) || skip_action) && pdu->N_bytes > 0)) { uint32_t pdu_len = pdu->N_bytes; // Cut if ((real_dist(mt19937) < args.pdu_cut_rate)) { int cut_pdu_len = static_cast(pdu_len * real_dist(mt19937)); logger.info("Cutting MAC PDU len (%d B -> %d B)", pdu_len, cut_pdu_len); pdu_len = cut_pdu_len; } // Write PDU in RX rx_rlc->write_pdu(lcid, pdu->msg, pdu_len); // Write PCAP write_pdu_to_pcap(is_dl, 4, pdu->msg, pdu_len); // Only handles NR rat if (is_dl) { pcap->write_dl_ccch(pdu->msg, pdu_len); } else { pcap->write_ul_ccch(pdu->msg, pdu_len); } } else { logger.warning(pdu->msg, pdu->N_bytes, "Dropping RLC PDU (%d B)", pdu->N_bytes); skip_action = true; // Avoid drop duplicating this PDU } // Duplicate if (real_dist(mt19937) > args.pdu_duplicate_rate || skip_action) { it++; skip_action = false; // Allow action on the next PDU } else { logger.warning(pdu->msg, pdu->N_bytes, "Duplicating RLC PDU (%d B)", pdu->N_bytes); skip_action = true; // Avoid drop of this PDU } } } void run_tti(rlc_interface_mac* tx_rlc, rlc_interface_mac* rx_rlc, bool is_dl) { std::vector pdu_list; // Run Tx run_tx_tti(tx_rlc, rx_rlc, pdu_list); // Reverse PDUs std::reverse(pdu_list.begin(), pdu_list.end()); // Run Rx run_rx_tti(tx_rlc, rx_rlc, is_dl, pdu_list); } void run_thread() override { srsran::move_task_t task; while (run_enable) { // Downlink direction first (RLC1->RLC2) run_tti(rlc1, rlc2, true); // UL direction (RLC2->RLC1) run_tti(rlc2, rlc1, false); // step timer timers->step_all(); if (pending_tasks.try_pop(&task)) { task(); } } if (pending_tasks.try_pop(&task)) { task(); } } rlc_interface_mac* rlc1 = nullptr; rlc_interface_mac* rlc2 = nullptr; bool run_enable = false; stress_test_args_t args = {}; rlc_pcap* pcap = nullptr; uint32_t lcid = 0; srslog::basic_logger& logger; srsran::timer_handler* timers = nullptr; srsran::block_queue pending_tasks; std::mt19937 mt19937; std::uniform_real_distribution real_dist; }; class rlc_tester : public pdcp_interface_rlc, public rrc_interface_rlc, public srsran::thread { public: rlc_tester(rlc_interface_pdcp* rlc_pdcp_, std::string name_, stress_test_args_t args_, uint32_t lcid_, uint32_t seed_) : logger(srslog::fetch_basic_logger(name_.c_str(), false)), rlc_pdcp(rlc_pdcp_), name(name_), args(args_), lcid(lcid_), thread("RLC_TESTER"), int_dist(MIN_SDU_SIZE, MAX_SDU_SIZE), mt19937(seed_) { logger.set_level(srslog::basic_levels::error); logger.set_hex_dump_max_size(LOG_HEX_LIMIT); } void stop() { run_enable = false; wait_thread_finish(); } // PDCP interface void write_pdu(uint32_t rx_lcid, unique_byte_buffer_t sdu) { assert(rx_lcid == lcid); if (args.mode != "AM") { // Only AM will guarantee to deliver SDUs, take first byte as reference for other modes next_expected_sdu = sdu->msg[0]; } // check SDU content (consider faster alternative) for (uint32_t i = 0; i < sdu->N_bytes; ++i) { if (sdu->msg[i] != next_expected_sdu) { logger.error(sdu->msg, sdu->N_bytes, "Received malformed SDU with size %d, expected data 0x%X", sdu->N_bytes, next_expected_sdu); fprintf(stderr, "Received malformed SDU with size %d\n", sdu->N_bytes); fprintf(stdout, "Received malformed SDU with size %d\n", sdu->N_bytes); std::this_thread::sleep_for(std::chrono::seconds(1)); // give some time to flush logs exit(-1); } } next_expected_sdu += 1; rx_pdus++; } void write_pdu_bcch_bch(unique_byte_buffer_t sdu) {} void write_pdu_bcch_dlsch(unique_byte_buffer_t sdu) {} void write_pdu_pcch(unique_byte_buffer_t sdu) {} void write_pdu_mch(uint32_t lcid_, srsran::unique_byte_buffer_t sdu) {} void notify_delivery(uint32_t lcid_, const srsran::pdcp_sn_vector_t& pdcp_sns) {} void notify_failure(uint32_t lcid_, const srsran::pdcp_sn_vector_t& pdcp_sns) {} // RRC interface void max_retx_attempted() { logger.error( "Maximum number of RLC retransmission reached. Consider increasing threshold or lowering channel drop rate."); std::this_thread::sleep_for(std::chrono::seconds(1)); exit(1); } std::string get_rb_name(uint32_t rx_lcid) { return std::string("DRB1"); } int get_nof_rx_pdus() { return rx_pdus; } private: const static size_t max_pdcp_sn = 262143u; // 18bit SN void run_thread() { uint32_t pdcp_sn = 0; uint32_t sdu_size = 0; uint8_t payload = 0x0; // increment for each SDU while (run_enable) { // SDU queue is full, don't assign PDCP SN if (rlc_pdcp->sdu_queue_is_full(lcid)) { continue; } unique_byte_buffer_t pdu = srsran::make_byte_buffer(); if (pdu == NULL) { printf("Error: Could not allocate PDU in rlc_tester::run_thread\n\n\n"); // backoff for a bit std::this_thread::sleep_for(std::chrono::milliseconds(1)); continue; } pdu->md.pdcp_sn = pdcp_sn; // random or fixed SDU size if (args.sdu_size < 1) { sdu_size = int_dist(mt19937); } else { sdu_size = args.sdu_size; } for (uint32_t i = 0; i < sdu_size; i++) { pdu->msg[i] = payload; } pdu->N_bytes = sdu_size; payload++; rlc_pdcp->write_sdu(lcid, std::move(pdu)); pdcp_sn = (pdcp_sn + 1) % max_pdcp_sn; if (args.sdu_gen_delay_usec > 0) { std::this_thread::sleep_for(std::chrono::microseconds(args.sdu_gen_delay_usec)); } } } bool run_enable = true; /// Tx uses thread-local PDCP SN to set SDU content, the Rx uses this variable to check received SDUs uint8_t next_expected_sdu = 0; uint64_t rx_pdus = 0; uint32_t lcid = 0; srslog::basic_logger& logger; std::string name; stress_test_args_t args = {}; rlc_interface_pdcp* rlc_pdcp = nullptr; // used by run_thread to push PDCP SDUs to RLC std::mt19937 mt19937; std::uniform_int_distribution<> int_dist; }; void stress_test(stress_test_args_t args) { auto& log1 = srslog::fetch_basic_logger("RLC_1", false); log1.set_level(static_cast(args.log_level)); log1.set_hex_dump_max_size(LOG_HEX_LIMIT); auto& log2 = srslog::fetch_basic_logger("RLC_2", false); log2.set_level(static_cast(args.log_level)); log2.set_hex_dump_max_size(LOG_HEX_LIMIT); rlc_pcap pcap; uint32_t lcid = 1; rlc_config_t cnfg_ = {}; if (args.rat == "LTE") { if (args.mode == "AM") { // config RLC AM bearer cnfg_ = rlc_config_t::default_rlc_am_config(); cnfg_.am.max_retx_thresh = args.max_retx; } else if (args.mode == "UM") { // config UM bearer cnfg_ = rlc_config_t::default_rlc_um_config(); } else if (args.mode == "TM") { // use default LCID in TM lcid = 0; } else { cout << "Unsupported RLC mode " << args.mode << ", exiting." << endl; exit(-1); } if (args.write_pcap) { pcap.open("rlc_stress_test.pcap", cnfg_); } } else if (args.rat == "NR") { if (args.mode == "UM6") { cnfg_ = rlc_config_t::default_rlc_um_nr_config(6); } else if (args.mode == "UM12") { cnfg_ = rlc_config_t::default_rlc_um_nr_config(12); } else { cout << "Unsupported RLC mode " << args.mode << ", exiting." << endl; exit(-1); } if (args.write_pcap) { pcap_handle = std::unique_ptr(new srsran::mac_pcap()); pcap_handle->open("rlc_stress_test_nr.pcap"); } } else { cout << "Unsupported RAT mode " << args.rat << ", exiting." << endl; exit(-1); } // generate random seed if needed uint32_t seed = 0; if (not args.zero_seed) { std::random_device rd; seed = rd(); } srsran::timer_handler timers(8); rlc rlc1(log1.id().c_str()); rlc rlc2(log2.id().c_str()); rlc_tester tester1(&rlc1, "tester1", args, lcid, seed); rlc_tester tester2(&rlc2, "tester2", args, lcid, seed); mac_dummy mac(&rlc1, &rlc2, args, lcid, &timers, &pcap, seed); rlc1.init(&tester1, &tester1, &timers, 0); rlc2.init(&tester2, &tester2, &timers, 0); // only add AM and UM bearers if (args.mode != "TM") { rlc1.add_bearer(lcid, cnfg_); rlc2.add_bearer(lcid, cnfg_); } printf("Starting test ..\n"); tester1.start(7); if (!args.single_tx) { tester2.start(7); } mac.start(); // wait until test is over std::this_thread::sleep_for(std::chrono::seconds(args.test_duration_sec)); printf("Test finished, tearing down ..\n"); // Stop RLC instances first to release blocking writers mac.enqueue_task([&rlc1, &rlc2]() { rlc1.stop(); rlc2.stop(); }); printf("RLC entities stopped.\n"); // Stop upper layer writers tester1.stop(); tester2.stop(); printf("Writers stopped.\n"); mac.stop(); if (args.write_pcap) { pcap.close(); } rlc_metrics_t metrics = {}; rlc1.get_metrics(metrics, 1); printf("RLC1 received %d SDUs in %ds (%.2f/s), Tx=%" PRIu64 " B, Rx=%" PRIu64 " B\n", tester1.get_nof_rx_pdus(), args.test_duration_sec, static_cast(tester1.get_nof_rx_pdus() / args.test_duration_sec), metrics.bearer[lcid].num_tx_pdu_bytes, metrics.bearer[lcid].num_rx_pdu_bytes); rlc_bearer_metrics_print(metrics.bearer[lcid]); rlc2.get_metrics(metrics, 1); printf("RLC2 received %d SDUs in %ds (%.2f/s), Tx=%" PRIu64 " B, Rx=%" PRIu64 " B\n", tester2.get_nof_rx_pdus(), args.test_duration_sec, static_cast(tester2.get_nof_rx_pdus() / args.test_duration_sec), metrics.bearer[lcid].num_tx_pdu_bytes, metrics.bearer[lcid].num_rx_pdu_bytes); rlc_bearer_metrics_print(metrics.bearer[lcid]); } int main(int argc, char** argv) { srsran_debug_handle_crash(argc, argv); stress_test_args_t args = {}; parse_args(&args, argc, argv); srslog::init(); stress_test(args); exit(0); }