/** * Copyright 2013-2021 Software Radio Systems Limited * * This file is part of srsLTE. * * srsLTE is free software: you can redistribute it and/or modify * it under the terms of the GNU Affero General Public License as * published by the Free Software Foundation, either version 3 of * the License, or (at your option) any later version. * * srsLTE is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Affero General Public License for more details. * * A copy of the GNU Affero General Public License can be found in * the LICENSE file in the top-level directory of this distribution * and at http://www.gnu.org/licenses/. * */ #include #include #include #include #include "srsran/srsran.h" #define MAX_DATABUFFER_SIZE (6144 * 16 * 3 / 8) srsran_cell_t cell = {.nof_prb = 100, .nof_ports = 1, .id = 1, .cp = SRSRAN_CP_NORM, .phich_resources = SRSRAN_PHICH_R_1, .phich_length = SRSRAN_PHICH_NORM}; static uint32_t transmission_mode = 1; static uint32_t cfi = 1; static uint32_t nof_rx_ant = 1; static uint32_t nof_subframes = 0; static uint16_t rnti = 0x1234; static bool print_dci_table; static uint32_t mcs = 20; static int cross_carrier_indicator = -1; static bool enable_256qam = false; void usage(char* prog) { printf("Usage: %s [cfpndvs]\n", prog); printf("\t-c cell id [Default %d]\n", cell.id); printf("\t-f cfi [Default %d]\n", cfi); printf("\t-p cell.nof_prb [Default %d]\n", cell.nof_prb); printf("\t-s number of subframes to simulate [Default %d]\n", nof_subframes); printf("\t-d Print DCI table [Default %s]\n", print_dci_table ? "yes" : "no"); printf("\t-t Transmission mode: 1,2,3,4 [Default %d]\n", transmission_mode + 1); printf("\t-m mcs [Default %d]\n", mcs); printf("\tAdvanced parameters:\n"); if (cross_carrier_indicator >= 0) { printf("\t\t-a carrier-indicator [Default %d]\n", cross_carrier_indicator); } else { printf("\t\t-a carrier-indicator [Default none]\n"); } printf("\t-v [set srsran_verbose to debug, default none]\n"); printf("\t-q Enable/Disable 256QAM modulation (default %s)\n", enable_256qam ? "enabled" : "disabled"); } void parse_extensive_param(char* param, char* arg) { int ext_code = SRSRAN_SUCCESS; if (!strcmp(param, "carrier-indicator")) { cross_carrier_indicator = (uint32_t)strtol(arg, NULL, 10); } else { ext_code = SRSRAN_ERROR; } if (ext_code) { ERROR("Error parsing parameter '%s' and argument '%s'", param, arg); exit(ext_code); } } void parse_args(int argc, char** argv) { int opt; // Load default transmission mode to avoid wrong number of ports/antennas if (transmission_mode == 0) { cell.nof_ports = 1; nof_rx_ant = 1; } else if (transmission_mode < 4) { cell.nof_ports = 2; nof_rx_ant = 2; } while ((opt = getopt(argc, argv, "cfapndvqstm")) != -1) { switch (opt) { case 't': transmission_mode = (uint32_t)strtol(argv[optind], NULL, 10) - 1; if (transmission_mode == 0) { cell.nof_ports = 1; nof_rx_ant = 1; } else if (transmission_mode < 4) { cell.nof_ports = 2; nof_rx_ant = 2; } break; case 'f': cfi = (uint32_t)(uint32_t)strtol(argv[optind], NULL, 10); break; case 'm': mcs = (uint32_t)(uint32_t)strtol(argv[optind], NULL, 10); break; case 'p': cell.nof_prb = (uint32_t)strtol(argv[optind], NULL, 10); break; case 'c': cell.id = (uint32_t)strtol(argv[optind], NULL, 10); break; case 's': nof_subframes = (uint32_t)strtol(argv[optind], NULL, 10); break; case 'd': print_dci_table = true; break; case 'a': parse_extensive_param(argv[optind], argv[optind + 1]); optind++; break; case 'v': srsran_verbose++; break; case 'q': enable_256qam = (enable_256qam) ? false : true; break; default: usage(argv[0]); exit(-1); } } } int work_enb(srsran_enb_dl_t* enb_dl, srsran_dl_sf_cfg_t* dl_sf, srsran_dci_cfg_t* dci_cfg, srsran_dci_dl_t* dci, srsran_softbuffer_tx_t** softbuffer_tx, uint8_t** data_tx) { int ret = SRSRAN_ERROR; srsran_enb_dl_put_base(enb_dl, dl_sf); if (srsran_enb_dl_put_pdcch_dl(enb_dl, dci_cfg, dci)) { ERROR("Error putting PDCCH sf_idx=%d", dl_sf->tti); goto quit; } // Create pdsch config srsran_pdsch_cfg_t pdsch_cfg; if (srsran_ra_dl_dci_to_grant(&cell, dl_sf, transmission_mode, enable_256qam, dci, &pdsch_cfg.grant)) { ERROR("Computing DL grant sf_idx=%d", dl_sf->tti); goto quit; } char str[512]; srsran_dci_dl_info(dci, str, 512); INFO("eNb PDCCH: rnti=0x%x, %s", rnti, str); for (uint32_t i = 0; i < SRSRAN_MAX_CODEWORDS; i++) { pdsch_cfg.softbuffers.tx[i] = softbuffer_tx[i]; } // Enable power allocation pdsch_cfg.power_scale = true; pdsch_cfg.p_a = 0.0f; // 0 dB pdsch_cfg.p_b = (transmission_mode > SRSRAN_TM1) ? 1 : 0; // 0 dB pdsch_cfg.rnti = rnti; pdsch_cfg.meas_time_en = false; if (srsran_enb_dl_put_pdsch(enb_dl, &pdsch_cfg, data_tx) < 0) { ERROR("Error putting PDSCH sf_idx=%d", dl_sf->tti); goto quit; } srsran_pdsch_tx_info(&pdsch_cfg, str, 512); INFO("eNb PDSCH: rnti=0x%x, %s", rnti, str); srsran_enb_dl_gen_signal(enb_dl); ret = SRSRAN_SUCCESS; quit: return ret; } int work_ue(srsran_ue_dl_t* ue_dl, srsran_dl_sf_cfg_t* sf_cfg_dl, srsran_ue_dl_cfg_t* ue_dl_cfg, srsran_dci_dl_t* dci_dl, uint32_t sf_idx, srsran_pdsch_res_t pdsch_res[SRSRAN_MAX_CODEWORDS]) { if (srsran_ue_dl_decode_fft_estimate(ue_dl, sf_cfg_dl, ue_dl_cfg) < 0) { ERROR("Getting PDCCH FFT estimate sf_idx=%d", sf_idx); return SRSRAN_ERROR; } int nof_grants = srsran_ue_dl_find_dl_dci(ue_dl, sf_cfg_dl, ue_dl_cfg, rnti, dci_dl); if (nof_grants < 0) { ERROR("Looking for DL grants sf_idx=%d", sf_idx); return SRSRAN_ERROR; } else if (nof_grants == 0) { ERROR("Failed to find DCI in sf_idx=%d", sf_idx); return SRSRAN_ERROR; } // Enable power allocation ue_dl_cfg->cfg.pdsch.power_scale = true; ue_dl_cfg->cfg.pdsch.p_a = 0.0f; // 0 dB ue_dl_cfg->cfg.pdsch.p_b = (transmission_mode > SRSRAN_TM1) ? 1 : 0; // 0 dB ue_dl_cfg->cfg.pdsch.rnti = dci_dl->rnti; ue_dl_cfg->cfg.pdsch.csi_enable = false; ue_dl_cfg->cfg.pdsch.meas_evm_en = false; if (srsran_verbose >= SRSRAN_VERBOSE_INFO) { char str[512]; srsran_dci_dl_info(&dci_dl[0], str, 512); INFO("UE PDCCH: rnti=0x%x, %s", rnti, str); } if (srsran_ra_dl_dci_to_grant( &cell, sf_cfg_dl, transmission_mode, enable_256qam, &dci_dl[0], &ue_dl_cfg->cfg.pdsch.grant)) { ERROR("Computing DL grant sf_idx=%d", sf_idx); return SRSRAN_ERROR; } // Reset softbuffer for (int i = 0; i < SRSRAN_MAX_CODEWORDS; i++) { if (ue_dl_cfg->cfg.pdsch.grant.tb[i].enabled) { srsran_softbuffer_rx_reset(ue_dl_cfg->cfg.pdsch.softbuffers.rx[i]); } } if (srsran_ue_dl_decode_pdsch(ue_dl, sf_cfg_dl, &ue_dl_cfg->cfg.pdsch, pdsch_res)) { ERROR("ERROR: Decoding PDSCH sf_idx=%d", sf_idx); return SRSRAN_ERROR; } if (srsran_verbose >= SRSRAN_VERBOSE_INFO) { char str[512]; srsran_pdsch_rx_info(&ue_dl_cfg->cfg.pdsch, pdsch_res, str, 512); INFO("eNb PDSCH: rnti=0x%x, %s", rnti, str); } return SRSRAN_SUCCESS; } static int check_softbits(srsran_enb_dl_t* enb_dl, srsran_ue_dl_t* ue_dl, srsran_ue_dl_cfg_t* ue_dl_cfg, uint32_t sf_idx, int tb) { int ret = SRSRAN_SUCCESS; // Scramble if (ue_dl->pdsch.llr_is_8bit) { srsran_sequence_pdsch_apply_c(ue_dl->pdsch.e[tb], ue_dl->pdsch.e[tb], rnti, ue_dl_cfg->cfg.pdsch.grant.tb[tb].cw_idx, 2 * (sf_idx % 10), cell.id, ue_dl_cfg->cfg.pdsch.grant.tb[tb].nof_bits); } else { srsran_sequence_pdsch_apply_s(ue_dl->pdsch.e[tb], ue_dl->pdsch.e[tb], rnti, ue_dl_cfg->cfg.pdsch.grant.tb[tb].cw_idx, 2 * (sf_idx % 10), cell.id, ue_dl_cfg->cfg.pdsch.grant.tb[tb].nof_bits); } int16_t* rx = ue_dl->pdsch.e[tb]; uint8_t* rx_bytes = ue_dl->pdsch.e[tb]; for (int i = 0, k = 0; i < ue_dl_cfg->cfg.pdsch.grant.tb[tb].nof_bits / 8; i++) { uint8_t w = 0; for (int j = 0; j < 8; j++, k++) { w |= (rx[k] > 0) ? ((uint32_t)1 << (uint32_t)(7 - j)) : 0; } rx_bytes[i] = w; } if (memcmp(ue_dl->pdsch.e[tb], enb_dl->pdsch.e[tb], ue_dl_cfg->cfg.pdsch.grant.tb[tb].nof_bits / 8) != 0) { ret = SRSRAN_ERROR; } return ret; } static int check_evm(srsran_enb_dl_t* enb_dl, srsran_ue_dl_t* ue_dl, srsran_ue_dl_cfg_t* ue_dl_cfg, int tb) { int ret = SRSRAN_SUCCESS; srsran_vec_sub_ccc(enb_dl->pdsch.d[tb], ue_dl->pdsch.d[tb], enb_dl->pdsch.d[tb], ue_dl_cfg->cfg.pdsch.grant.nof_re); uint32_t evm_max_i = srsran_vec_max_abs_ci(enb_dl->pdsch.d[tb], ue_dl_cfg->cfg.pdsch.grant.nof_re); float evm = cabsf(enb_dl->pdsch.d[tb][evm_max_i]); if (evm > 0.1f) { printf("TB%d Constellation EVM (%.3f) is too high\n", tb, evm); ret = SRSRAN_ERROR; } return ret; } int main(int argc, char** argv) { srsran_enb_dl_t* enb_dl = srsran_vec_malloc(sizeof(srsran_enb_dl_t)); srsran_ue_dl_t* ue_dl = srsran_vec_malloc(sizeof(srsran_ue_dl_t)); srsran_random_t random = srsran_random_init(0); struct timeval t[3] = {}; size_t tx_nof_bits = 0, rx_nof_bits = 0; srsran_softbuffer_tx_t* softbuffer_tx[SRSRAN_MAX_TB] = {}; srsran_softbuffer_rx_t* softbuffer_rx[SRSRAN_MAX_TB] = {}; uint8_t* data_tx[SRSRAN_MAX_TB] = {}; uint8_t* data_rx[SRSRAN_MAX_TB] = {}; uint32_t count_failures = 0, count_tbs = 0; size_t pdsch_decode_us = 0; size_t pdsch_encode_us = 0; int ret = -1; parse_args(argc, argv); cf_t* signal_buffer[SRSRAN_MAX_PORTS] = {NULL}; /* * Allocate Memory */ for (int i = 0; i < cell.nof_ports; i++) { signal_buffer[i] = srsran_vec_cf_malloc(SRSRAN_SF_LEN_PRB(cell.nof_prb)); if (!signal_buffer[i]) { ERROR("Error allocating buffer"); goto quit; } } for (int i = 0; i < SRSRAN_MAX_TB; i++) { softbuffer_tx[i] = (srsran_softbuffer_tx_t*)calloc(sizeof(srsran_softbuffer_tx_t), 1); if (!softbuffer_tx[i]) { ERROR("Error allocating softbuffer_tx"); goto quit; } if (srsran_softbuffer_tx_init(softbuffer_tx[i], cell.nof_prb)) { ERROR("Error initiating softbuffer_tx"); goto quit; } softbuffer_rx[i] = (srsran_softbuffer_rx_t*)calloc(sizeof(srsran_softbuffer_rx_t), 1); if (!softbuffer_rx[i]) { ERROR("Error allocating softbuffer_rx"); goto quit; } if (srsran_softbuffer_rx_init(softbuffer_rx[i], cell.nof_prb)) { ERROR("Error initiating softbuffer_rx"); goto quit; } data_tx[i] = srsran_vec_u8_malloc(MAX_DATABUFFER_SIZE); if (!data_tx[i]) { ERROR("Error allocating data tx"); goto quit; } data_rx[i] = srsran_vec_u8_malloc(MAX_DATABUFFER_SIZE); if (!data_rx[i]) { ERROR("Error allocating data tx"); goto quit; } } /* * Initialise eNb */ if (srsran_enb_dl_init(enb_dl, signal_buffer, cell.nof_prb)) { ERROR("Error initiating eNb downlink"); goto quit; } if (srsran_enb_dl_set_cell(enb_dl, cell)) { ERROR("Error setting eNb DL cell"); goto quit; } /* * Initialise UE */ if (srsran_ue_dl_init(ue_dl, signal_buffer, cell.nof_prb, nof_rx_ant)) { ERROR("Error initiating UE downlink"); goto quit; } if (srsran_ue_dl_set_cell(ue_dl, cell)) { ERROR("Error setting UE downlink cell"); goto quit; } /* * Create PDCCH Allocations */ uint32_t nof_locations[SRSRAN_NOF_SF_X_FRAME]; srsran_dci_location_t dci_locations[SRSRAN_NOF_SF_X_FRAME][SRSRAN_MAX_CANDIDATES_UE]; uint32_t location_counter = 0; for (uint32_t i = 0; i < SRSRAN_NOF_SF_X_FRAME; i++) { srsran_dl_sf_cfg_t sf_cfg_dl; ZERO_OBJECT(sf_cfg_dl); sf_cfg_dl.tti = i; sf_cfg_dl.cfi = cfi; sf_cfg_dl.sf_type = SRSRAN_SF_NORM; nof_locations[i] = srsran_pdcch_ue_locations(&enb_dl->pdcch, &sf_cfg_dl, dci_locations[i], SRSRAN_MAX_CANDIDATES_UE, rnti); location_counter += nof_locations[i]; } if (nof_subframes == 0) { nof_subframes = location_counter; } /* * DCI Configuration */ srsran_dci_dl_t dci = {}; srsran_dci_cfg_t dci_cfg = {}; dci_cfg.srs_request_enabled = false; dci_cfg.ra_format_enabled = false; dci_cfg.multiple_csi_request_enabled = false; dci_cfg.is_not_ue_ss = false; // DCI Fixed values dci.pid = 0; dci.pinfo = 0; dci.rnti = rnti; dci.is_tdd = false; dci.is_dwpts = false; dci.is_ra_order = false; dci.tb_cw_swap = false; dci.pconf = false; dci.power_offset = false; dci.tpc_pucch = false; dci.ra_preamble = false; dci.ra_mask_idx = false; dci.srs_request = false; dci.srs_request_present = false; if (cross_carrier_indicator >= 0) { dci.cif_present = true; dci_cfg.cif_enabled = true; dci.cif = (uint32_t)cross_carrier_indicator; } else { dci.cif_present = false; dci_cfg.cif_enabled = false; } // Set PRB Allocation type #if 0 dci.alloc_type = SRSRAN_RA_ALLOC_TYPE2; uint32_t n_prb = 1; ///< Number of PRB uint32_t s_prb = 0; ///< Start dci.type2_alloc.riv = srsran_ra_type2_to_riv(n_prb, s_prb, cell.nof_prb); #else dci.alloc_type = SRSRAN_RA_ALLOC_TYPE0; dci.type0_alloc.rbg_bitmask = 0xffffffff; // All PRB #endif // Set TB if (transmission_mode < SRSRAN_TM3) { dci.format = (dci.alloc_type == SRSRAN_RA_ALLOC_TYPE2) ? SRSRAN_DCI_FORMAT1A : SRSRAN_DCI_FORMAT1; dci.tb[0].mcs_idx = mcs; dci.tb[0].rv = 0; dci.tb[0].ndi = 0; dci.tb[0].cw_idx = 0; dci.tb[1].mcs_idx = 0; dci.tb[1].rv = 1; } else if (transmission_mode == SRSRAN_TM3) { dci.format = SRSRAN_DCI_FORMAT2A; for (uint32_t i = 0; i < SRSRAN_MAX_TB; i++) { dci.tb[i].mcs_idx = mcs; dci.tb[i].rv = 0; dci.tb[i].ndi = 0; dci.tb[i].cw_idx = i; } } else if (transmission_mode == SRSRAN_TM4) { dci.format = SRSRAN_DCI_FORMAT2; dci.pinfo = 0; for (uint32_t i = 0; i < SRSRAN_MAX_TB; i++) { dci.tb[i].mcs_idx = mcs; dci.tb[i].rv = 0; dci.tb[i].ndi = 0; dci.tb[i].cw_idx = i; } } else { ERROR("Wrong transmission mode (%d)", transmission_mode); } /* * Loop */ INFO("--- Starting test ---"); for (uint32_t sf_idx = 0; sf_idx < nof_subframes; sf_idx++) { /* Generate random data */ for (int j = 0; j < SRSRAN_MAX_TB; j++) { for (int i = 0; i < MAX_DATABUFFER_SIZE; i++) { data_tx[j][i] = (uint8_t)srsran_random_uniform_int_dist(random, 0, 255); } } /* * Run eNodeB */ srsran_dl_sf_cfg_t sf_cfg_dl = {}; sf_cfg_dl.tti = sf_idx % 10; sf_cfg_dl.cfi = cfi; sf_cfg_dl.sf_type = SRSRAN_SF_NORM; // Set DCI Location dci.location = dci_locations[sf_idx % 10][(sf_idx / 10) % nof_locations[sf_idx % 10]]; if (cell.nof_prb == 6) { for (int i = 0; i < SRSRAN_MAX_TB; i++) { dci.tb[i].mcs_idx = (sf_idx % 5 == 0) ? 0 : mcs; } } else if (cell.nof_prb == 15) { for (int i = 0; i < SRSRAN_MAX_TB; i++) { dci.tb[i].mcs_idx = (sf_idx % 5 == 0) ? SRSRAN_MIN(mcs, 27) : mcs; } } INFO("--- Process eNb ---"); gettimeofday(&t[1], NULL); if (work_enb(enb_dl, &sf_cfg_dl, &dci_cfg, &dci, softbuffer_tx, data_tx)) { goto quit; } gettimeofday(&t[2], NULL); get_time_interval(t); pdsch_encode_us += (size_t)(t[0].tv_sec * 1e6 + t[0].tv_usec); // MIMO perfect crossed channel if (transmission_mode > 1) { for (int i = 0; i < SRSRAN_SF_LEN_PRB(cell.nof_prb); i++) { cf_t x0 = signal_buffer[0][i]; cf_t x1 = signal_buffer[1][i]; cf_t y0 = x0 + x1; cf_t y1 = x0 - x1; signal_buffer[0][i] = y0; signal_buffer[1][i] = y1; } } /* * Run UE */ INFO("--- Process UE ---"); gettimeofday(&t[1], NULL); srsran_ue_dl_cfg_t ue_dl_cfg = {}; srsran_dci_dl_t dci_dl[SRSRAN_MAX_DCI_MSG] = {}; ue_dl_cfg.cfg.tm = transmission_mode; ue_dl_cfg.cfg.pdsch.p_a = 0.0; ue_dl_cfg.cfg.pdsch.power_scale = false; ue_dl_cfg.cfg.pdsch.decoder_type = SRSRAN_MIMO_DECODER_MMSE; ue_dl_cfg.cfg.pdsch.max_nof_iterations = 10; ue_dl_cfg.cfg.pdsch.meas_time_en = false; ue_dl_cfg.chest_cfg.filter_coef[0] = 4; ue_dl_cfg.chest_cfg.filter_coef[1] = 1; ue_dl_cfg.chest_cfg.filter_type = SRSRAN_CHEST_FILTER_GAUSS; ue_dl_cfg.chest_cfg.noise_alg = SRSRAN_NOISE_ALG_REFS; ue_dl_cfg.chest_cfg.rsrp_neighbour = false; ue_dl_cfg.chest_cfg.estimator_alg = SRSRAN_ESTIMATOR_ALG_AVERAGE; ue_dl_cfg.chest_cfg.cfo_estimate_enable = false; ue_dl_cfg.chest_cfg.cfo_estimate_sf_mask = false; ue_dl_cfg.chest_cfg.sync_error_enable = false; ue_dl_cfg.cfg.dci = dci_cfg; ue_dl_cfg.cfg.pdsch.use_tbs_index_alt = enable_256qam; srsran_pdsch_res_t pdsch_res[SRSRAN_MAX_CODEWORDS]; for (int i = 0; i < SRSRAN_MAX_CODEWORDS; i++) { pdsch_res[i].payload = data_rx[i]; pdsch_res[i].avg_iterations_block = 0.0f; pdsch_res[i].crc = false; ue_dl_cfg.cfg.pdsch.softbuffers.rx[i] = softbuffer_rx[i]; } if (work_ue(ue_dl, &sf_cfg_dl, &ue_dl_cfg, dci_dl, sf_idx, pdsch_res)) { goto quit; } gettimeofday(&t[2], NULL); get_time_interval(t); pdsch_decode_us += (size_t)(t[0].tv_sec * 1e6 + t[0].tv_usec); for (int i = 0; i < SRSRAN_MAX_TB; i++) { if (ue_dl_cfg.cfg.pdsch.grant.tb[i].enabled) { if (check_evm(enb_dl, ue_dl, &ue_dl_cfg, i)) { count_failures++; } else if (check_softbits(enb_dl, ue_dl, &ue_dl_cfg, sf_idx, i) != SRSRAN_SUCCESS) { printf("TB%d: The received softbits in subframe %d DO NOT match the encoded bits (crc=%d)\n", i, sf_idx, pdsch_res[i].crc); srsran_vec_fprint_byte(stdout, (uint8_t*)enb_dl->pdsch.e[i], ue_dl_cfg.cfg.pdsch.grant.tb[i].nof_bits / 8); srsran_vec_fprint_byte(stdout, (uint8_t*)ue_dl->pdsch.e[i], ue_dl_cfg.cfg.pdsch.grant.tb[i].nof_bits / 8); count_failures++; } else if (!pdsch_res[i].crc || memcmp(data_tx[i], data_rx[i], (uint32_t)ue_dl_cfg.cfg.pdsch.grant.tb[i].tbs / 8) != 0) { printf("UE Failed decoding tb %d in subframe %d. crc=%d; Bytes:\n", i, sf_idx, pdsch_res[i].crc); srsran_vec_fprint_byte(stdout, data_tx[i], (uint32_t)ue_dl_cfg.cfg.pdsch.grant.tb[i].tbs / 8); srsran_vec_fprint_byte(stdout, data_rx[i], (uint32_t)ue_dl_cfg.cfg.pdsch.grant.tb[i].tbs / 8); count_failures++; } else { // Decoded Ok rx_nof_bits += ue_dl_cfg.cfg.pdsch.grant.tb[i].tbs; } count_tbs++; tx_nof_bits += ue_dl_cfg.cfg.pdsch.grant.tb[i].tbs; } } } printf("Finished! The UE failed decoding %d of %d transport blocks.\n", count_failures, count_tbs); if (!count_failures) { ret = SRSRAN_SUCCESS; } printf("%zd were transmitted, %zd bits were received.\n", tx_nof_bits, rx_nof_bits); printf("[Rates in Mbps] Granted Processed\n"); printf(" eNb: %5.1f %5.1f\n", (float)tx_nof_bits / (float)nof_subframes / 1000.0f, (float)rx_nof_bits / pdsch_encode_us); printf(" UE: %5.1f %5.1f\n", (float)rx_nof_bits / (float)nof_subframes / 1000.0f, (float)rx_nof_bits / pdsch_decode_us); printf("BLER: %5.1f%%\n", (float)count_failures / (float)count_tbs * 100.0f); quit: srsran_enb_dl_free(enb_dl); srsran_ue_dl_free(ue_dl); srsran_random_free(random); for (int i = 0; i < cell.nof_ports; i++) { if (signal_buffer[i]) { free(signal_buffer[i]); } } for (int i = 0; i < SRSRAN_MAX_TB; i++) { if (softbuffer_tx[i]) { srsran_softbuffer_tx_free(softbuffer_tx[i]); free(softbuffer_tx[i]); } if (softbuffer_rx[i]) { srsran_softbuffer_rx_free(softbuffer_rx[i]); free(softbuffer_rx[i]); } if (data_tx[i]) { free(data_tx[i]); } if (data_rx[i]) { free(data_rx[i]); } } if (enb_dl) { free(enb_dl); } if (ue_dl) { free(ue_dl); } if (ret) { printf("Error\n"); } else { printf("Ok\n"); } exit(ret); }