/*------------------------------------------------------------------------ * snow_3g.c * * Adapted from ETSI/SAGE specifications: * "Specification of the 3GPP Confidentiality and * Integrity Algorithms UEA2 & UIA2. * Document 1: UEA2 and UIA2 Specification" * "Specification of the 3GPP Confidentiality * and Integrity Algorithms UEA2 & UIA2. * Document 2: SNOW 3G Specification" *------------------------------------------------------------------------*/ #include "srslte/common/snow_3g.h" /* LFSR */ u32 LFSR_S0 = 0x00; u32 LFSR_S1 = 0x00; u32 LFSR_S2 = 0x00; u32 LFSR_S3 = 0x00; u32 LFSR_S4 = 0x00; u32 LFSR_S5 = 0x00; u32 LFSR_S6 = 0x00; u32 LFSR_S7 = 0x00; u32 LFSR_S8 = 0x00; u32 LFSR_S9 = 0x00; u32 LFSR_S10 = 0x00; u32 LFSR_S11 = 0x00; u32 LFSR_S12 = 0x00; u32 LFSR_S13 = 0x00; u32 LFSR_S14 = 0x00; u32 LFSR_S15 = 0x00; /* FSM */ u32 FSM_R1 = 0x00; u32 FSM_R2 = 0x00; u32 FSM_R3 = 0x00; /* Rijndael S-box SR */ u8 SR[256] = { 0x63,0x7C,0x77,0x7B,0xF2,0x6B,0x6F,0xC5,0x30,0x01,0x67,0x2B,0xFE,0xD7,0xAB,0x76, 0xCA,0x82,0xC9,0x7D,0xFA,0x59,0x47,0xF0,0xAD,0xD4,0xA2,0xAF,0x9C,0xA4,0x72,0xC0, 0xB7,0xFD,0x93,0x26,0x36,0x3F,0xF7,0xCC,0x34,0xA5,0xE5,0xF1,0x71,0xD8,0x31,0x15, 0x04,0xC7,0x23,0xC3,0x18,0x96,0x05,0x9A,0x07,0x12,0x80,0xE2,0xEB,0x27,0xB2,0x75, 0x09,0x83,0x2C,0x1A,0x1B,0x6E,0x5A,0xA0,0x52,0x3B,0xD6,0xB3,0x29,0xE3,0x2F,0x84, 0x53,0xD1,0x00,0xED,0x20,0xFC,0xB1,0x5B,0x6A,0xCB,0xBE,0x39,0x4A,0x4C,0x58,0xCF, 0xD0,0xEF,0xAA,0xFB,0x43,0x4D,0x33,0x85,0x45,0xF9,0x02,0x7F,0x50,0x3C,0x9F,0xA8, 0x51,0xA3,0x40,0x8F,0x92,0x9D,0x38,0xF5,0xBC,0xB6,0xDA,0x21,0x10,0xFF,0xF3,0xD2, 0xCD,0x0C,0x13,0xEC,0x5F,0x97,0x44,0x17,0xC4,0xA7,0x7E,0x3D,0x64,0x5D,0x19,0x73, 0x60,0x81,0x4F,0xDC,0x22,0x2A,0x90,0x88,0x46,0xEE,0xB8,0x14,0xDE,0x5E,0x0B,0xDB, 0xE0,0x32,0x3A,0x0A,0x49,0x06,0x24,0x5C,0xC2,0xD3,0xAC,0x62,0x91,0x95,0xE4,0x79, 0xE7,0xC8,0x37,0x6D,0x8D,0xD5,0x4E,0xA9,0x6C,0x56,0xF4,0xEA,0x65,0x7A,0xAE,0x08, 0xBA,0x78,0x25,0x2E,0x1C,0xA6,0xB4,0xC6,0xE8,0xDD,0x74,0x1F,0x4B,0xBD,0x8B,0x8A, 0x70,0x3E,0xB5,0x66,0x48,0x03,0xF6,0x0E,0x61,0x35,0x57,0xB9,0x86,0xC1,0x1D,0x9E, 0xE1,0xF8,0x98,0x11,0x69,0xD9,0x8E,0x94,0x9B,0x1E,0x87,0xE9,0xCE,0x55,0x28,0xDF, 0x8C,0xA1,0x89,0x0D,0xBF,0xE6,0x42,0x68,0x41,0x99,0x2D,0x0F,0xB0,0x54,0xBB,0x16 }; /* S-box SQ */ u8 SQ[256] = { 0x25,0x24,0x73,0x67,0xD7,0xAE,0x5C,0x30,0xA4,0xEE,0x6E,0xCB,0x7D,0xB5,0x82,0xDB, 0xE4,0x8E,0x48,0x49,0x4F,0x5D,0x6A,0x78,0x70,0x88,0xE8,0x5F,0x5E,0x84,0x65,0xE2, 0xD8,0xE9,0xCC,0xED,0x40,0x2F,0x11,0x28,0x57,0xD2,0xAC,0xE3,0x4A,0x15,0x1B,0xB9, 0xB2,0x80,0x85,0xA6,0x2E,0x02,0x47,0x29,0x07,0x4B,0x0E,0xC1,0x51,0xAA,0x89,0xD4, 0xCA,0x01,0x46,0xB3,0xEF,0xDD,0x44,0x7B,0xC2,0x7F,0xBE,0xC3,0x9F,0x20,0x4C,0x64, 0x83,0xA2,0x68,0x42,0x13,0xB4,0x41,0xCD,0xBA,0xC6,0xBB,0x6D,0x4D,0x71,0x21,0xF4, 0x8D,0xB0,0xE5,0x93,0xFE,0x8F,0xE6,0xCF,0x43,0x45,0x31,0x22,0x37,0x36,0x96,0xFA, 0xBC,0x0F,0x08,0x52,0x1D,0x55,0x1A,0xC5,0x4E,0x23,0x69,0x7A,0x92,0xFF,0x5B,0x5A, 0xEB,0x9A,0x1C,0xA9,0xD1,0x7E,0x0D,0xFC,0x50,0x8A,0xB6,0x62,0xF5,0x0A,0xF8,0xDC, 0x03,0x3C,0x0C,0x39,0xF1,0xB8,0xF3,0x3D,0xF2,0xD5,0x97,0x66,0x81,0x32,0xA0,0x00, 0x06,0xCE,0xF6,0xEA,0xB7,0x17,0xF7,0x8C,0x79,0xD6,0xA7,0xBF,0x8B,0x3F,0x1F,0x53, 0x63,0x75,0x35,0x2C,0x60,0xFD,0x27,0xD3,0x94,0xA5,0x7C,0xA1,0x05,0x58,0x2D,0xBD, 0xD9,0xC7,0xAF,0x6B,0x54,0x0B,0xE0,0x38,0x04,0xC8,0x9D,0xE7,0x14,0xB1,0x87,0x9C, 0xDF,0x6F,0xF9,0xDA,0x2A,0xC4,0x59,0x16,0x74,0x91,0xAB,0x26,0x61,0x76,0x34,0x2B, 0xAD,0x99,0xFB,0x72,0xEC,0x33,0x12,0xDE,0x98,0x3B,0xC0,0x9B,0x3E,0x18,0x10,0x3A, 0x56,0xE1,0x77,0xC9,0x1E,0x9E,0x95,0xA3,0x90,0x19,0xA8,0x6C,0x09,0xD0,0xF0,0x86 }; /* MULx. * Input V: an 8-bit input. * Input c: an 8-bit input. * Output : an 8-bit output. * See section 3.1.1 for details. */ u8 MULx(u8 V, u8 c) { if ( V & 0x80 ) return ( (V << 1) ^ c); else return ( V << 1); } /* MULxPOW. * Input V: an 8-bit input. * Input i: a positive integer. * Input c: an 8-bit input. * Output : an 8-bit output. * See section 3.1.2 for details. */ u8 MULxPOW(u8 V, u8 i, u8 c) { if ( i == 0) return V; else return MULx( MULxPOW( V, i-1, c ), c); } /* The function MUL alpha. * Input c: 8-bit input. * Output : 32-bit output. * See section 3.4.2 for details. */ u32 MULalpha(u8 c) { return ( ( ((u32)MULxPOW(c, 23, 0xa9)) << 24 ) | ( ((u32)MULxPOW(c, 245, 0xa9)) << 16 ) | ( ((u32)MULxPOW(c, 48, 0xa9)) << 8 ) | ( ((u32)MULxPOW(c, 239, 0xa9)) ) ) ; } /* The function DIV alpha. * Input c: 8-bit input. * Output : 32-bit output. * See section 3.4.3 for details. */ u32 DIValpha(u8 c) { return ( ( ((u32)MULxPOW(c, 16, 0xa9)) << 24 ) | ( ((u32)MULxPOW(c, 39, 0xa9)) << 16 ) | ( ((u32)MULxPOW(c, 6, 0xa9)) << 8 ) | ( ((u32)MULxPOW(c, 64, 0xa9)) ) ) ; } /* The 32x32-bit S-Box S1 * Input: a 32-bit input. * Output: a 32-bit output of S1 box. * See section 3.3.1. */ u32 S1(u32 w) { u8 r0=0, r1=0, r2=0, r3=0; u8 srw0 = SR[ (u8)((w >> 24) & 0xff) ]; u8 srw1 = SR[ (u8)((w >> 16) & 0xff) ]; u8 srw2 = SR[ (u8)((w >> 8) & 0xff) ]; u8 srw3 = SR[ (u8)((w) & 0xff) ]; r0 = ( ( MULx( srw0 , 0x1b) ) ^ ( srw1 ) ^ ( srw2 ) ^ ( (MULx( srw3, 0x1b)) ^ srw3 ) ); r1 = ( ( ( MULx( srw0 , 0x1b) ) ^ srw0 ) ^ ( MULx(srw1, 0x1b) ) ^ ( srw2 ) ^ ( srw3 ) ); r2 = ( ( srw0 ) ^ ( ( MULx( srw1 , 0x1b) ) ^ srw1 ) ^ ( MULx(srw2, 0x1b) ) ^ ( srw3 ) ); r3 = ( ( srw0 ) ^ ( srw1 ) ^ ( ( MULx( srw2 , 0x1b) ) ^ srw2 ) ^ ( MULx( srw3, 0x1b) ) ); return ( ( ((u32)r0) << 24 ) | ( ((u32)r1) << 16 ) | ( ((u32)r2) << 8 ) | ( ((u32)r3) ) ); } /* The 32x32-bit S-Box S2 * Input: a 32-bit input. * Output: a 32-bit output of S2 box. * See section 3.3.2. */ u32 S2(u32 w) { u8 r0=0, r1=0, r2=0, r3=0; u8 sqw0 = SQ[ (u8)((w >> 24) & 0xff) ]; u8 sqw1 = SQ[ (u8)((w >> 16) & 0xff) ]; u8 sqw2 = SQ[ (u8)((w >> 8) & 0xff) ]; u8 sqw3 = SQ[ (u8)((w) & 0xff) ]; r0 = ( ( MULx( sqw0 , 0x69) ) ^ ( sqw1 ) ^ ( sqw2 ) ^ ( (MULx( sqw3, 0x69)) ^ sqw3 ) ); r1 = ( ( ( MULx( sqw0 , 0x69) ) ^ sqw0 ) ^ ( MULx(sqw1, 0x69) ) ^ ( sqw2 ) ^ ( sqw3 ) ); r2 = ( ( sqw0 ) ^ ( ( MULx( sqw1 , 0x69) ) ^ sqw1 ) ^ ( MULx(sqw2, 0x69) ) ^ ( sqw3 ) ); r3 = ( ( sqw0 ) ^ ( sqw1 ) ^ ( ( MULx( sqw2 , 0x69) ) ^ sqw2 ) ^ ( MULx( sqw3, 0x69) ) ); return ( ( ((u32)r0) << 24 ) | ( ((u32)r1) << 16 ) | ( ((u32)r2) << 8 ) | ( ((u32)r3) ) ); } /* Clocking LFSR in initialization mode. * LFSR Registers S0 to S15 are updated as the LFSR receives a single clock. * Input F: a 32-bit word comes from output of FSM. * See section 3.4.4. */ void ClockLFSRInitializationMode(u32 F) { u32 v = ( ( (LFSR_S0 << 8) & 0xffffff00 ) ^ ( MULalpha( (u8)((LFSR_S0>>24) & 0xff) ) ) ^ ( LFSR_S2 ) ^ ( (LFSR_S11 >> 8) & 0x00ffffff ) ^ ( DIValpha( (u8)( ( LFSR_S11) & 0xff ) ) ) ^ ( F ) ); LFSR_S0 = LFSR_S1; LFSR_S1 = LFSR_S2; LFSR_S2 = LFSR_S3; LFSR_S3 = LFSR_S4; LFSR_S4 = LFSR_S5; LFSR_S5 = LFSR_S6; LFSR_S6 = LFSR_S7; LFSR_S7 = LFSR_S8; LFSR_S8 = LFSR_S9; LFSR_S9 = LFSR_S10; LFSR_S10 = LFSR_S11; LFSR_S11 = LFSR_S12; LFSR_S12 = LFSR_S13; LFSR_S13 = LFSR_S14; LFSR_S14 = LFSR_S15; LFSR_S15 = v; } /* Clocking LFSR in keystream mode. * LFSR Registers S0 to S15 are updated as the LFSR receives a single clock. * See section 3.4.5. */ void ClockLFSRKeyStreamMode() { u32 v = ( ( (LFSR_S0 << 8) & 0xffffff00 ) ^ ( MULalpha( (u8)((LFSR_S0>>24) & 0xff) ) ) ^ ( LFSR_S2 ) ^ ( (LFSR_S11 >> 8) & 0x00ffffff ) ^ ( DIValpha( (u8)( ( LFSR_S11) & 0xff ) ) ) ); LFSR_S0 = LFSR_S1; LFSR_S1 = LFSR_S2; LFSR_S2 = LFSR_S3; LFSR_S3 = LFSR_S4; LFSR_S4 = LFSR_S5; LFSR_S5 = LFSR_S6; LFSR_S6 = LFSR_S7; LFSR_S7 = LFSR_S8; LFSR_S8 = LFSR_S9; LFSR_S9 = LFSR_S10; LFSR_S10 = LFSR_S11; LFSR_S11 = LFSR_S12; LFSR_S12 = LFSR_S13; LFSR_S13 = LFSR_S14; LFSR_S14 = LFSR_S15; LFSR_S15 = v; } /* Clocking FSM. * Produces a 32-bit word F. * Updates FSM registers R1, R2, R3. * See Section 3.4.6. */ u32 ClockFSM() { u32 F = ( ( LFSR_S15 + FSM_R1 ) & 0xffffffff ) ^ FSM_R2 ; u32 r = ( FSM_R2 + ( FSM_R3 ^ LFSR_S5 ) ) & 0xffffffff ; FSM_R3 = S2(FSM_R2); FSM_R2 = S1(FSM_R1); FSM_R1 = r; return F; } /* Initialization. * Input k[4]: Four 32-bit words making up 128-bit key. * Input IV[4]: Four 32-bit words making 128-bit initialization variable. * Output: All the LFSRs and FSM are initialized for key generation. * See Section 4.1. */ void snow3g_initialize(u32 k[4], u32 IV[4]) { u8 i=0; u32 F = 0x0; LFSR_S15 = k[3] ^ IV[0]; LFSR_S14 = k[2]; LFSR_S13 = k[1]; LFSR_S12 = k[0] ^ IV[1]; LFSR_S11 = k[3] ^ 0xffffffff; LFSR_S10 = k[2] ^ 0xffffffff ^ IV[2]; LFSR_S9 = k[1] ^ 0xffffffff ^ IV[3]; LFSR_S8 = k[0] ^ 0xffffffff; LFSR_S7 = k[3]; LFSR_S6 = k[2]; LFSR_S5 = k[1]; LFSR_S4 = k[0]; LFSR_S3 = k[3] ^ 0xffffffff; LFSR_S2 = k[2] ^ 0xffffffff; LFSR_S1 = k[1] ^ 0xffffffff; LFSR_S0 = k[0] ^ 0xffffffff; FSM_R1 = 0x0; FSM_R2 = 0x0; FSM_R3 = 0x0; for(i=0;i<32;i++) { F = ClockFSM(); ClockLFSRInitializationMode(F); } } /* Generation of Keystream. * input n: number of 32-bit words of keystream. * input z: space for the generated keystream, assumes * memory is allocated already. * output: generated keystream which is filled in z * See section 4.2. */ void snow3g_generate_keystream(u32 n, u32 *ks) { u32 t = 0; u32 F = 0x0; ClockFSM(); /* Clock FSM once. Discard the output. */ ClockLFSRKeyStreamMode(); /* Clock LFSR in keystream mode once. */ for ( t=0; t> 24) & 0xff; data[4*i+1] ^= (u8) (KS[i] >> 16) & 0xff; data[4*i+2] ^= (u8) (KS[i] >> 8) & 0xff; data[4*i+3] ^= (u8) (KS[i] ) & 0xff; } free(KS); /* zero last bits of data in case its length is not byte-aligned this is an addition to the C reference code, which did not handle it */ if (lastbits) data[length/8] &= 256 - (1<>i ) & 0x1 ) result ^= MUL64xPOW(V,i,c); } return result; } /* mask8bit. * Input n: an integer in 1-7. * Output : an 8 bit mask. * Prepares an 8 bit mask with required number of 1 bits on the MSB side. */ u8 mask8bit(int n) { return 0xFF ^ ((1<<(8-n)) - 1); } /* f9. * Input key: 128 bit Integrity Key. * Input count:32-bit Count, Frame dependent input. * Input fresh: 32-bit Random number. * Input dir:1 bit, direction of transmission (in the LSB). * Input data: length number of bits, input bit stream. * Input length: 64 bit Length, i.e., the number of bits to be MAC'd. * Output : 32 bit block used as MAC * Generates 32-bit MAC using UIA2 algorithm as defined in Section 4. */ u8* snow3g_f9( u8* key, u32 count, u32 fresh, u32 dir, u8 *data, u64 length) { u32 K[4],IV[4], z[5]; u32 i=0, D; static u8 MAC_I[4] = {0,0,0,0}; /* static memory for the result */ u64 EVAL; u64 V; u64 P; u64 Q; u64 c; u64 M_D_2; int rem_bits = 0; /* Load the Integrity Key for SNOW3G initialization as in section 4.4. */ for (i=0; i<4; i++) K[3-i] = (key[4*i] << 24) ^ (key[4*i+1] << 16) ^ (key[4*i+2] << 8) ^ (key[4*i+3]); /* Prepare the Initialization Vector (IV) for SNOW3G initialization as in section 4.4. */ IV[3] = count; IV[2] = fresh; IV[1] = count ^ ( dir << 31 ) ; IV[0] = fresh ^ (dir << 15); z[0] = z[1] = z[2] = z[3] = z[4] = 0; /* Run SNOW 3G to produce 5 keystream words z_1, z_2, z_3, z_4 and z_5. */ snow3g_initialize(K, IV); snow3g_generate_keystream(5, z); P = (u64)z[0] << 32 | (u64)z[1]; Q = (u64)z[2] << 32 | (u64)z[3]; /* Calculation */ if ((length % 64) == 0) D = (length>>6) + 1; else D = (length>>6) + 2; EVAL = 0; c = 0x1b; /* for 0 <= i <= D-3 */ for (i=0; i 7) { M_D_2 |= (u64)data[8*(D-2)+i] << (8*(7-i)); rem_bits -= 8; i++; } if (rem_bits > 0) M_D_2 |= (u64)(data[8*(D-2)+i] & mask8bit(rem_bits)) << (8*(7-i)); V = EVAL ^ M_D_2; EVAL = MUL64(V,P,c); /* for D-1 */ EVAL ^= length; /* Multiply by Q */ EVAL = MUL64(EVAL,Q,c); /* XOR with z_5: this is a modification to the reference C code, which forgot to XOR z[5] */ for (i=0; i<4; i++) /* MAC_I[i] = (mac32 >> (8*(3-i))) & 0xff; */ MAC_I[i] = ((EVAL >> (56-(i*8))) ^ (z[4] >> (24-(i*8)))) & 0xff; return MAC_I; }