/** * * \section COPYRIGHT * * Copyright 2013-2021 Software Radio Systems Limited * * By using this file, you agree to the terms and conditions set * forth in the LICENSE file which can be found at the top level of * the distribution. * */ #include "srsue/hdr/metrics_stdout.h" #include #include #include #include #include #include #include #include using namespace std; namespace srsue { char const* const prefixes[2][9] = { { "", "m", "u", "n", "p", "f", "a", "z", "y", }, { "", "k", "M", "G", "T", "P", "E", "Z", "Y", }, }; void metrics_stdout::set_ue_handle(ue_metrics_interface* ue_) { ue = ue_; } void metrics_stdout::toggle_print(bool b) { do_print = b; } void metrics_stdout::print_table(const bool display_neighbours) { if (display_neighbours) { cout << "--------Signal-------------Neighbour--DL-------------------------------------UL----------------------" << endl; cout << "cc pci rsrp pl cfo pci rsrp mcs snr turbo brate bler ta_us mcs buff brate bler" << endl; } else { cout << "--------Signal--------------DL-------------------------------------UL----------------------" << endl; cout << "cc pci rsrp pl cfo mcs snr turbo brate bler ta_us mcs buff brate bler" << endl; } table_has_neighbours = display_neighbours; n_reports = 0; } void metrics_stdout::set_metrics_helper(const phy_metrics_t phy, const mac_metrics_t mac[SRSRAN_MAX_CARRIERS], const rrc_metrics_t rrc, bool display_neighbours, const uint32_t r) { if (phy.info[r].pci != UINT32_MAX) { cout << std::setw(4) << phy.info[r].pci << std::setw(0); } else { cout << " n/a"; } cout << float_to_string(phy.ch[r].rsrp, 2); cout << float_to_string(phy.ch[r].pathloss, 2); cout << float_to_eng_string(phy.sync[r].cfo, 2); // Find strongest neighbour for this EARFCN (cells are ordered) if (display_neighbours) { bool has_neighbour = false; for (auto& c : rrc.neighbour_cells) { if (c.earfcn == phy.info[r].dl_earfcn && c.pci != phy.info[r].pci) { cout << std::setw(4) << c.pci << std::setw(0); cout << float_to_string(c.rsrp, 2); has_neighbour = true; break; } } if (!has_neighbour) { cout << " n/a"; cout << " n/a"; } } cout << float_to_string(phy.dl[r].mcs, 2); cout << float_to_string(phy.ch[r].sinr, 2); cout << float_to_string(phy.dl[r].turbo_iters, 2); cout << float_to_eng_string((float)mac[r].rx_brate / (mac[r].nof_tti * 1e-3), 2); if (mac[r].rx_pkts > 0) { cout << float_to_string((float)100 * mac[r].rx_errors / mac[r].rx_pkts, 1) << "%"; } else { cout << float_to_string(0, 1) << "%"; } cout << float_to_string(phy.sync[r].ta_us, 2); cout << float_to_string(phy.ul[r].mcs, 2); cout << float_to_eng_string((float)mac[r].ul_buffer, 2); cout << float_to_eng_string((float)mac[r].tx_brate / (mac[r].nof_tti * 1e-3), 2); if (mac[r].tx_pkts > 0) { cout << float_to_string((float)100 * mac[r].tx_errors / mac[r].tx_pkts, 1) << "%"; } else { cout << float_to_string(0, 1) << "%"; } cout << endl; } void metrics_stdout::set_metrics(const ue_metrics_t& metrics, const uint32_t period_usec) { if (ue == nullptr) { return; } // always print RF error if (metrics.rf.rf_error) { printf("RF status: O=%d, U=%d, L=%d\n", metrics.rf.rf_o, metrics.rf.rf_u, metrics.rf.rf_l); } if (!do_print) { return; } if (metrics.stack.rrc.state != RRC_STATE_CONNECTED) { cout << "--- disconnected ---" << endl; return; } bool display_neighbours = FORCE_NEIGHBOUR_CELL; if (metrics.phy.nof_active_cc > 1) { display_neighbours |= metrics.stack.rrc.neighbour_cells.size() > metrics.phy.nof_active_cc - 1; } else { display_neighbours |= metrics.stack.rrc.neighbour_cells.size() > 0; } // print table header every 10 reports if (++n_reports > 10) { print_table(display_neighbours); } // also print table header if neighbours are added/removed in between if (display_neighbours != table_has_neighbours) { print_table(display_neighbours); } for (uint32_t r = 0; r < metrics.phy.nof_active_cc; r++) { cout << std::setw(2) << r; set_metrics_helper(metrics.phy, metrics.stack.mac, metrics.stack.rrc, display_neighbours, r); } for (uint32_t r = 0; r < metrics.phy_nr.nof_active_cc; r++) { // Assumption LTE is followed by the NR carriers. cout << std::setw(2) << metrics.phy.nof_active_cc + r; set_metrics_helper(metrics.phy_nr, metrics.stack.mac_nr, metrics.stack.rrc, display_neighbours, r); } if (metrics.rf.rf_error) { printf("RF status: O=%d, U=%d, L=%d\n", metrics.rf.rf_o, metrics.rf.rf_u, metrics.rf.rf_l); } } std::string metrics_stdout::float_to_string(float f, int digits) { std::ostringstream os; const int precision = SRSRAN_MIN((int)((f == 0.0f || f == 100.0f) ? digits - 1 : digits - log10f(fabsf(f)) - 2 * FLT_EPSILON), 3); os << std::setw(6) << std::fixed << std::setprecision(precision) << f; return os.str(); } std::string metrics_stdout::float_to_eng_string(float f, int digits) { const int degree = (f == 0.0) ? 0 : lrint(floor(log10f(fabs(f)) / 3)); std::string factor; if (abs(degree) < 9) { if (degree < 0) factor = prefixes[0][abs(degree)]; else factor = prefixes[1][abs(degree)]; } else { return "failed"; } const double scaled = f * pow(1000.0, -degree); if (degree != 0) { return float_to_string(scaled, digits) + factor; } else { return " " + float_to_string(scaled, digits) + factor; } } } // namespace srsue