/* * Copyright 2013-2020 Software Radio Systems Limited * * This file is part of srsLTE. * * srsLTE is free software: you can redistribute it and/or modify * it under the terms of the GNU Affero General Public License as * published by the Free Software Foundation, either version 3 of * the License, or (at your option) any later version. * * srsLTE is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Affero General Public License for more details. * * A copy of the GNU Affero General Public License can be found in * the LICENSE file in the top-level directory of this distribution * and at http://www.gnu.org/licenses/. * */ #include "srslte/upper/rlc_um_nr.h" #include #define RX_MOD_NR_BASE(x) (((x)-RX_Next_Highest - cfg.um_nr.UM_Window_Size) % cfg.um_nr.mod) namespace srslte { rlc_um_nr::rlc_um_nr(srslte::log_ref log_, uint32_t lcid_, srsue::pdcp_interface_rlc* pdcp_, srsue::rrc_interface_rlc* rrc_, srslte::timer_handler* timers_) : rlc_um_base(log_, lcid_, pdcp_, rrc_, timers_) {} rlc_um_nr::~rlc_um_nr() { stop(); } bool rlc_um_nr::configure(const rlc_config_t& cnfg_) { // determine bearer name and configure Rx/Tx objects rb_name = get_rb_name(rrc, lcid, cnfg_.um.is_mrb); // store config cfg = cnfg_; rx.reset(new rlc_um_nr_rx(this)); if (not rx->configure()) { return false; } tx.reset(new rlc_um_nr_tx(this)); if (not tx->configure(cfg, rb_name)) { return false; } log->info("%s configured in %s: sn_field_length=%u bits\n", rb_name.c_str(), srslte::to_string(cnfg_.rlc_mode).c_str(), srslte::to_number(cfg.um_nr.sn_field_length)); rx_enabled = true; tx_enabled = true; return true; } /**************************************************************************** * Tx Subclass implementation ***************************************************************************/ rlc_um_nr::rlc_um_nr_tx::rlc_um_nr_tx(rlc_um_base* parent_) : rlc_um_base_tx(parent_) {} uint32_t rlc_um_nr::rlc_um_nr_tx::get_buffer_state() { std::lock_guard lock(mutex); // Bytes needed for tx SDUs uint32_t n_sdus = tx_sdu_queue.size(); uint32_t n_bytes = tx_sdu_queue.size_bytes(); if (tx_sdu) { n_sdus++; n_bytes += tx_sdu->N_bytes; } // Room needed for header extensions? (integer rounding) if (n_sdus > 1) { n_bytes += ((n_sdus - 1) * 1.5) + 0.5; } // Room needed for fixed header? if (n_bytes > 0) n_bytes += (cfg.um.is_mrb) ? 2 : 3; return n_bytes; } bool rlc_um_nr::rlc_um_nr_tx::configure(const rlc_config_t& cnfg_, std::string rb_name_) { cfg = cnfg_; if (cfg.um_nr.mod == 0) { log->error("Error configuring %s RLC UM: tx_mod==0\n", rb_name.c_str()); return false; } tx_sdu_queue.resize(cnfg_.tx_queue_length); rb_name = rb_name_; return true; } int rlc_um_nr::rlc_um_nr_tx::build_data_pdu(unique_byte_buffer_t pdu, uint8_t* payload, uint32_t nof_bytes) { std::lock_guard lock(mutex); rlc_um_nr_pdu_header_t header = {}; header.si = rlc_nr_si_field_t::full_sdu; header.sn = TX_Next; header.sn_size = cfg.um_nr.sn_field_length; uint32_t to_move = 0; uint8_t* pdu_ptr = pdu->msg; int head_len = rlc_um_nr_packed_length(header); int pdu_space = SRSLTE_MIN(nof_bytes, pdu->get_tailroom()); if (pdu_space <= head_len + 1) { log->warning("%s Cannot build a PDU - %d bytes available, %d bytes required for header\n", rb_name.c_str(), nof_bytes, head_len); return 0; } // Check for SDU segment if (tx_sdu) { uint32_t space = pdu_space - head_len; to_move = space >= tx_sdu->N_bytes ? tx_sdu->N_bytes : space; log->debug( "%s adding remainder of SDU segment - %d bytes of %d remaining\n", rb_name.c_str(), to_move, tx_sdu->N_bytes); memcpy(pdu_ptr, tx_sdu->msg, to_move); pdu_ptr += to_move; pdu->N_bytes += to_move; tx_sdu->N_bytes -= to_move; tx_sdu->msg += to_move; if (tx_sdu->N_bytes == 0) { log->debug( "%s Complete SDU scheduled for tx. Stack latency: %ld us\n", rb_name.c_str(), tx_sdu->get_latency_us()); tx_sdu.reset(); header.si = rlc_nr_si_field_t::last_segment; } else { header.si = rlc_nr_si_field_t::neither_first_nor_last_segment; } pdu_space -= SRSLTE_MIN(to_move, pdu->get_tailroom()); header.so = next_so; } else { // Pull SDU from queue log->debug("pdu_space=%d, head_len=%d\n", pdu_space, head_len); head_len = rlc_um_nr_packed_length(header); tx_sdu = tx_sdu_queue.read(); uint32_t space = pdu_space - head_len; to_move = space >= tx_sdu->N_bytes ? tx_sdu->N_bytes : space; log->debug("%s adding new SDU - %d bytes of %d remaining\n", rb_name.c_str(), to_move, tx_sdu->N_bytes); memcpy(pdu_ptr, tx_sdu->msg, to_move); pdu_ptr += to_move; pdu->N_bytes += to_move; tx_sdu->N_bytes -= to_move; tx_sdu->msg += to_move; if (tx_sdu->N_bytes == 0) { log->debug( "%s Complete SDU scheduled for tx. Stack latency: %ld us\n", rb_name.c_str(), tx_sdu->get_latency_us()); tx_sdu.reset(); header.si = rlc_nr_si_field_t::full_sdu; } else { header.si = rlc_nr_si_field_t::first_segment; } pdu_space -= to_move; } // advance SO offset next_so += to_move; // Update SN if needed if (header.si == rlc_nr_si_field_t::last_segment) { TX_Next = (TX_Next + 1) % cfg.um_nr.mod; next_so = 0; } // Add header and TX rlc_um_nr_write_data_pdu_header(header, pdu.get()); memcpy(payload, pdu->msg, pdu->N_bytes); uint32_t ret = pdu->N_bytes; log->info_hex(payload, ret, "%s Tx PDU SN=%d (%d B)\n", rb_name.c_str(), header.sn, pdu->N_bytes); debug_state(); return ret; } void rlc_um_nr::rlc_um_nr_tx::debug_state() { log->debug("%s TX_Next=%d, next_so=%d\n", rb_name.c_str(), TX_Next, next_so); } void rlc_um_nr::rlc_um_nr_tx::reset() { TX_Next = 0; next_so = 0; } /**************************************************************************** * Rx Subclass implementation ***************************************************************************/ rlc_um_nr::rlc_um_nr_rx::rlc_um_nr_rx(rlc_um_base* parent_) : rlc_um_base_rx(parent_), reassembly_timer(timers->get_unique_timer()) {} bool rlc_um_nr::rlc_um_nr_rx::configure() { if (cfg.um_nr.mod == 0) { log->error("Error configuring %s RLC UM: rx_mod==0\n", rb_name.c_str()); return false; } // check timer if (not reassembly_timer.is_valid()) { log->error("Configuring RLC UM NR RX: timers not configured\n"); return false; } // configure timer if (cfg.um_nr.t_reassembly_ms > 0) { reassembly_timer.set(static_cast(cfg.um_nr.t_reassembly_ms), [this](uint32_t tid) { timer_expired(tid); }); } return true; } void rlc_um_nr::rlc_um_nr_rx::stop() { std::lock_guard lock(mutex); reset(); reassembly_timer.stop(); } void rlc_um_nr::rlc_um_nr_rx::reset() { RX_Next_Reassembly = 0; RX_Timer_Trigger = 0; RX_Next_Highest = 0; rx_sdu.reset(); // Drop all messages in RX window rx_window.clear(); // stop timer if (reassembly_timer.is_valid()) { reassembly_timer.stop(); } } // TS 38.322 Sec. 5.1.2 void rlc_um_nr::rlc_um_nr_rx::reestablish() { // drop all SDUs, SDU segments, PDUs and reset timers reset(); } // TS 38.322 v15.003 Section 5.2.2.2.4 void rlc_um_nr::rlc_um_nr_rx::timer_expired(uint32_t timeout_id) { std::lock_guard lock(mutex); if (reassembly_timer.id() == timeout_id) { log->info("%s reassembly timeout expiry - updating RX_Next_Reassembly and reassembling\n", rb_name.c_str()); log->warning("Lost PDU SN: %d\n", RX_Next_Reassembly); metrics.num_lost_pdus++; if (rx_sdu != nullptr) { rx_sdu->clear(); } // update RX_Next_Reassembly to the next SN that has not been reassembled yet RX_Next_Reassembly = RX_Timer_Trigger; while (RX_MOD_NR_BASE(RX_Next_Reassembly) < RX_MOD_NR_BASE(RX_Next_Highest)) { RX_Next_Reassembly = (RX_Next_Reassembly + 1) % cfg.um_nr.mod; debug_state(); } // discard all segments with SN < updated RX_Next_Reassembly for (auto it = rx_window.begin(); it != rx_window.end();) { if (it->first < RX_Next_Reassembly) { it = rx_window.erase(it); } else { ++it; } } // check start of t_reassembly if (RX_MOD_NR_BASE(RX_Next_Highest) > RX_MOD_NR_BASE(RX_Next_Reassembly + 1) || (RX_MOD_NR_BASE(RX_Next_Highest) == RX_MOD_NR_BASE(RX_Next_Reassembly + 1) && has_missing_byte_segment(RX_Next_Reassembly))) { reassembly_timer.run(); RX_Timer_Trigger = RX_Next_Highest; } debug_state(); } } // Sec 5.2.2.2.1 bool rlc_um_nr::rlc_um_nr_rx::sn_in_reassembly_window(const uint32_t sn) { return (RX_MOD_NR_BASE(RX_Next_Highest - cfg.um_nr.UM_Window_Size) <= RX_MOD_NR_BASE(sn) && RX_MOD_NR_BASE(sn) < RX_MOD_NR_BASE(RX_Next_Highest)); } // Sec 5.2.2.2.2 bool rlc_um_nr::rlc_um_nr_rx::sn_invalid_for_rx_buffer(const uint32_t sn) { return (RX_MOD_NR_BASE(RX_Next_Highest - cfg.um_nr.UM_Window_Size) <= RX_MOD_NR_BASE(sn) && RX_MOD_NR_BASE(sn) < RX_MOD_NR_BASE(RX_Next_Reassembly)); } unique_byte_buffer_t rlc_um_nr::rlc_um_nr_rx::rlc_um_nr_strip_pdu_header(const rlc_um_nr_pdu_header_t& header, const uint8_t* payload, const uint32_t nof_bytes) { unique_byte_buffer_t sdu = allocate_unique_buffer(*pool); if (!sdu) { log->error("Discarting packet: no space in buffer pool\n"); return nullptr; } memcpy(sdu->msg, payload, nof_bytes); sdu->N_bytes = nof_bytes; // strip RLC header int header_len = rlc_um_nr_packed_length(header); sdu->msg += header_len; sdu->N_bytes -= header_len; return sdu; } bool rlc_um_nr::rlc_um_nr_rx::has_missing_byte_segment(const uint32_t sn) { // is at least one missing byte segment of the RLC SDU associated with SN = RX_Next_Reassembly before the last byte of // all received segments of this RLC SDU return true; } // Sect 5.2.2.2.3 void rlc_um_nr::rlc_um_nr_rx::handle_rx_buffer_update(const uint32_t sn) { if (rx_window.find(sn) != rx_window.end()) { // iterate over received segments and try to assemble full SDU auto& pdu = rx_window.at(sn); for (auto it = pdu.segments.begin(); it != pdu.segments.end();) { log->debug("Have %s segment with SO=%d for SN=%d\n", to_string_short(it->second.header.si).c_str(), it->second.header.so, it->second.header.sn); if (it->second.header.so == pdu.next_expected_so) { if (pdu.next_expected_so == 0) { if (pdu.sdu == nullptr) { // reuse buffer of first segment for final SDU pdu.sdu = std::move(it->second.buf); pdu.next_expected_so = pdu.sdu->N_bytes; log->debug("Reusing first segment of SN=%d for final SDU\n", it->second.header.sn); it = pdu.segments.erase(it); } else { log->debug("SDU buffer already allocated. Possible retransmission of first segment.\n"); if (it->second.header.so != pdu.next_expected_so) { log->error("Invalid PDU. SO doesn't match. Discarting all segments of SN=%d.\n", sn); rx_window.erase(sn); return; } } } else { if (it->second.buf->N_bytes > pdu.sdu->get_tailroom()) { log->error("Cannot fit RLC PDU in SDU buffer (tailroom=%d, len=%d), dropping both. Erasing SN=%d.\n", rx_sdu->get_tailroom(), it->second.buf->N_bytes, it->second.header.sn); rx_window.erase(sn); metrics.num_lost_pdus++; return; } // add this segment to the end of the SDU buffer memcpy(pdu.sdu->msg + pdu.sdu->N_bytes, it->second.buf->msg, it->second.buf->N_bytes); pdu.sdu->N_bytes += it->second.buf->N_bytes; pdu.next_expected_so += it->second.buf->N_bytes; log->debug("Appended SO=%d of SN=%d\n", it->second.header.so, it->second.header.sn); it = pdu.segments.erase(it); if (pdu.next_expected_so == pdu.total_sdu_length) { // deliver full SDU to upper layers log->info("Delivering %s SDU SN=%d (%d B)", rb_name.c_str(), sn, pdu.sdu->N_bytes); pdcp->write_pdu(lcid, std::move(pdu.sdu)); // find next SN in rx buffer if (sn == RX_Next_Reassembly) { RX_Next_Reassembly = ((RX_Next_Reassembly + 1) % cfg.um_nr.mod); while (RX_MOD_NR_BASE(RX_Next_Reassembly) < RX_MOD_NR_BASE(RX_Next_Highest)) { RX_Next_Reassembly = (RX_Next_Reassembly + 1) % cfg.um_nr.mod; } log->debug("Updating RX_Next_Reassembly=%d\n", RX_Next_Reassembly); } // delete PDU from rx_window rx_window.erase(sn); return; } } } else { // handle next segment ++it; } } // check for SN outside of rx window if (not sn_in_reassembly_window(sn)) { // update RX_Next_highest RX_Next_Highest = sn + 1; log->debug("Updating RX_Next_Highest=%d\n", RX_Next_Highest); // drop all SNs outside of new rx window for (auto it = rx_window.begin(); it != rx_window.end();) { if (not sn_in_reassembly_window(it->first)) { log->info("%s SN: %d outside rx window [%d:%d] - discarding\n", rb_name.c_str(), it->first, RX_Next_Highest - cfg.um_nr.UM_Window_Size, RX_Next_Highest); it = rx_window.erase(it); metrics.num_lost_pdus++; } else { ++it; } } if (not sn_in_reassembly_window(RX_Next_Reassembly)) { // update RX_Next_Reassembly to first SN that has not been reassembled and delivered for (const auto& rx_pdu : rx_window) { if (rx_pdu.first >= RX_MOD_NR_BASE(RX_Next_Highest - cfg.um_nr.UM_Window_Size)) { RX_Next_Reassembly = rx_pdu.first; log->debug("Updating RX_Next_Reassembly=%d\n", RX_Next_Reassembly); break; } } } if (reassembly_timer.is_running()) { if (RX_Timer_Trigger <= RX_Next_Reassembly || (not sn_in_reassembly_window(RX_Timer_Trigger) and RX_Timer_Trigger != RX_Next_Highest) || ((RX_Next_Highest == RX_Next_Reassembly + 1) && not has_missing_byte_segment(sn))) { reassembly_timer.stop(); } } if (not reassembly_timer.is_running() && has_missing_byte_segment(sn)) { if (RX_Next_Highest > RX_Next_Reassembly + 1) { reassembly_timer.run(); RX_Timer_Trigger = RX_Next_Highest; } } } } else { log->error("SN=%d does not exist in Rx buffer\n", sn); } } inline void rlc_um_nr::rlc_um_nr_rx::update_total_sdu_length(rlc_umd_pdu_segments_nr_t& pdu_segments, const rlc_umd_pdu_nr_t& rx_pdu) { if (rx_pdu.header.si == rlc_nr_si_field_t::last_segment) { pdu_segments.total_sdu_length = rx_pdu.header.so + rx_pdu.buf->N_bytes; log->info("%s updating total SDU length for SN=%d to %d B\n", rb_name.c_str(), rx_pdu.header.sn, pdu_segments.total_sdu_length); } }; // Section 5.2.2.2.2 void rlc_um_nr::rlc_um_nr_rx::handle_data_pdu(uint8_t* payload, uint32_t nof_bytes) { std::lock_guard lock(mutex); rlc_um_nr_pdu_header_t header = {}; rlc_um_nr_read_data_pdu_header(payload, nof_bytes, cfg.um_nr.sn_field_length, &header); log->debug_hex(payload, nof_bytes, "RX %s Rx data PDU (%d B)", rb_name.c_str(), nof_bytes); // check if PDU contains a SN if (header.si == rlc_nr_si_field_t::full_sdu) { // copy full PDU into buffer unique_byte_buffer_t sdu = rlc_um_nr_strip_pdu_header(header, payload, nof_bytes); // deliver to PDCP log->info("Delivering %s SDU (%d B)", rb_name.c_str(), sdu->N_bytes); pdcp->write_pdu(lcid, std::move(sdu)); } else if (sn_invalid_for_rx_buffer(header.sn)) { log->info("%s Discarding SN=%d\n", rb_name.c_str(), header.sn); // Nothing else to do here .. } else { // place PDU in receive buffer rlc_umd_pdu_nr_t rx_pdu = {}; rx_pdu.header = header; rx_pdu.buf = rlc_um_nr_strip_pdu_header(header, payload, nof_bytes); // check if this SN is already present in rx buffer if (rx_window.find(header.sn) == rx_window.end()) { // first received segment of this SN, add to rx buffer log->info("%s placing %s segment of SN=%d in Rx buffer\n", rb_name.c_str(), to_string_short(header.si).c_str(), header.sn); rlc_umd_pdu_segments_nr_t pdu_segments = {}; update_total_sdu_length(pdu_segments, rx_pdu); pdu_segments.segments.emplace(header.so, std::move(rx_pdu)); rx_window[header.sn] = std::move(pdu_segments); } else { // other segment for this SN already present, update received data log->info("%s updating SN=%d at SO=%d with %d B\n", rb_name.c_str(), rx_pdu.header.sn, rx_pdu.header.so, rx_pdu.buf->N_bytes); auto& pdu_segments = rx_window.at(header.sn); // calculate total SDU length update_total_sdu_length(pdu_segments, rx_pdu); // append to list of segments pdu_segments.segments.emplace(header.so, std::move(rx_pdu)); } // handle received segments handle_rx_buffer_update(header.sn); } debug_state(); } void rlc_um_nr::rlc_um_nr_rx::debug_state() { log->debug("%s RX_Next_Reassembly=%d, RX_Timer_Trigger=%d, RX_Next_Highest=%d, t_Reassembly=%s\n", rb_name.c_str(), RX_Next_Reassembly, RX_Timer_Trigger, RX_Next_Highest, reassembly_timer.is_running() ? "running" : "stopped"); } /**************************************************************************** * Header pack/unpack helper functions * Ref: 3GPP TS 38.322 v15.3.0 Section 6.2.2.3 ***************************************************************************/ uint32_t rlc_um_nr_read_data_pdu_header(const byte_buffer_t* pdu, const rlc_um_nr_sn_size_t sn_size, rlc_um_nr_pdu_header_t* header) { return rlc_um_nr_read_data_pdu_header(pdu->msg, pdu->N_bytes, sn_size, header); } uint32_t rlc_um_nr_read_data_pdu_header(const uint8_t* payload, const uint32_t nof_bytes, const rlc_um_nr_sn_size_t sn_size, rlc_um_nr_pdu_header_t* header) { uint8_t* ptr = const_cast(payload); header->sn_size = sn_size; // Fixed part if (sn_size == rlc_um_nr_sn_size_t::size6bits) { header->si = (rlc_nr_si_field_t)((*ptr >> 6) & 0x03); // 2 bits SI header->sn = *ptr & 0x3F; // 6 bits SN // sanity check if (header->si == rlc_nr_si_field_t::full_sdu and header->sn != 0) { fprintf(stderr, "Malformed PDU, reserved bits are set.\n"); return 0; } ptr++; } else if (sn_size == rlc_um_nr_sn_size_t::size12bits) { header->si = (rlc_nr_si_field_t)((*ptr >> 6) & 0x03); // 2 bits SI header->sn = (*ptr & 0x0F) << 4; // 4 bits SN // sanity check if (header->si == rlc_nr_si_field_t::first_segment) { // make sure two reserved bits are not set if (((*ptr >> 4) & 0x03) != 0) { fprintf(stderr, "Malformed PDU, reserved bits are set.\n"); return 0; } } // continue unpacking remaining SN ptr++; header->sn |= (*ptr & 0xFF); // 8 bits SN ptr++; } else { fprintf(stderr, "Unsupported SN length\n"); return 0; } // Read optional part if (header->si == rlc_nr_si_field_t::last_segment || header->si == rlc_nr_si_field_t::neither_first_nor_last_segment) { // read SO header->so = (*ptr & 0xFF) << 8; ptr++; header->so |= (*ptr & 0xFF); ptr++; } // return consumed bytes return (ptr - payload); } uint32_t rlc_um_nr_packed_length(const rlc_um_nr_pdu_header_t& header) { uint32_t len = 0; if (header.si == rlc_nr_si_field_t::full_sdu || header.si == rlc_nr_si_field_t::first_segment) { len = 1; if (header.sn_size == rlc_um_nr_sn_size_t::size12bits) { len++; } } else { if (header.sn_size == rlc_um_nr_sn_size_t::size6bits) { len = 3; } else { len = 4; } } return len; } uint32_t rlc_um_nr_write_data_pdu_header(const rlc_um_nr_pdu_header_t& header, byte_buffer_t* pdu) { // Make room for the header uint32_t len = rlc_um_nr_packed_length(header); pdu->msg -= len; uint8_t* ptr = pdu->msg; // write SI field *ptr = (header.si & 0x03) << 6; // 2 bits SI if (header.si == rlc_nr_si_field_t::full_sdu) { // that's all .. ptr++; } else { if (header.sn_size == rlc_um_nr_sn_size_t::size6bits) { // write SN *ptr |= (header.sn & 0x3f); // 6 bit SN ptr++; } else { // 12bit SN *ptr |= (header.sn & 0xf); // 4 bit SN ptr++; *ptr = (header.sn & 0xFF); // remaining 8 bit SN ptr++; } if (header.so) { // write SO *ptr = (header.so) >> 8; // first part of SO ptr++; *ptr = (header.so & 0xFF); // second part of SO ptr++; } } pdu->N_bytes += ptr - pdu->msg; return len; } } // namespace srslte