/** * * \section COPYRIGHT * * Copyright 2013-2020 Software Radio Systems Limited * * By using this file, you agree to the terms and conditions set * forth in the LICENSE file which can be found at the top level of * the distribution. * */ #include "srslte/upper/rlc_am_lte.h" #include #include #define MOD 1024 #define RX_MOD_BASE(x) (((x)-vr_r) % 1024) #define TX_MOD_BASE(x) (((x)-vt_a) % 1024) #define LCID (parent->lcid) #define RB_NAME (parent->rb_name.c_str()) namespace srslte { rlc_am_lte::rlc_am_lte(srslog::basic_logger& logger, uint32_t lcid_, srsue::pdcp_interface_rlc* pdcp_, srsue::rrc_interface_rlc* rrc_, srslte::timer_handler* timers_) : logger(logger), rrc(rrc_), pdcp(pdcp_), timers(timers_), lcid(lcid_), tx(this), rx(this) {} // Applies new configuration. Must be just reestablished or initiated bool rlc_am_lte::configure(const rlc_config_t& cfg_) { // determine bearer name and configure Rx/Tx objects rb_name = rrc->get_rb_name(lcid); // store config cfg = cfg_; if (not rx.configure(cfg.am)) { logger.error("Error configuring bearer (RX)"); return false; } if (not tx.configure(cfg)) { logger.error("Error configuring bearer (TX)"); return false; } logger.info("%s configured: t_poll_retx=%d, poll_pdu=%d, poll_byte=%d, max_retx_thresh=%d, " "t_reordering=%d, t_status_prohibit=%d", rb_name.c_str(), cfg.am.t_poll_retx, cfg.am.poll_pdu, cfg.am.poll_byte, cfg.am.max_retx_thresh, cfg.am.t_reordering, cfg.am.t_status_prohibit); return true; } void rlc_am_lte::set_bsr_callback(bsr_callback_t callback) { tx.set_bsr_callback(callback); } void rlc_am_lte::empty_queue() { // Drop all messages in TX SDU queue tx.empty_queue(); } void rlc_am_lte::reestablish() { logger.debug("Reestablished bearer %s", rb_name.c_str()); tx.reestablish(); // calls stop and enables tx again rx.reestablish(); // calls only stop } void rlc_am_lte::stop() { logger.debug("Stopped bearer %s", rb_name.c_str()); tx.stop(); rx.stop(); } rlc_mode_t rlc_am_lte::get_mode() { return rlc_mode_t::am; } uint32_t rlc_am_lte::get_bearer() { return lcid; } rlc_bearer_metrics_t rlc_am_lte::get_metrics() { // update values that aren't calculated on the fly metrics.rx_latency_ms = rx.get_sdu_rx_latency_ms(); metrics.rx_buffered_bytes = rx.get_rx_buffered_bytes(); return metrics; } void rlc_am_lte::reset_metrics() { metrics = {}; } /**************************************************************************** * PDCP interface ***************************************************************************/ void rlc_am_lte::write_sdu(unique_byte_buffer_t sdu) { if (tx.write_sdu(std::move(sdu)) == SRSLTE_SUCCESS) { metrics.num_tx_sdus++; } } void rlc_am_lte::discard_sdu(uint32_t discard_sn) { tx.discard_sdu(discard_sn); metrics.num_lost_sdus++; } bool rlc_am_lte::sdu_queue_is_full() { return tx.sdu_queue_is_full(); } /**************************************************************************** * MAC interface ***************************************************************************/ bool rlc_am_lte::has_data() { return tx.has_data(); } uint32_t rlc_am_lte::get_buffer_state() { return tx.get_buffer_state(); } int rlc_am_lte::read_pdu(uint8_t* payload, uint32_t nof_bytes) { int read_bytes = tx.read_pdu(payload, nof_bytes); metrics.num_tx_pdus++; metrics.num_tx_pdu_bytes += read_bytes; return read_bytes; } void rlc_am_lte::write_pdu(uint8_t* payload, uint32_t nof_bytes) { rx.write_pdu(payload, nof_bytes); metrics.num_rx_pdus++; metrics.num_rx_pdu_bytes += nof_bytes; } /**************************************************************************** * Tx subclass implementation ***************************************************************************/ rlc_am_lte::rlc_am_lte_tx::rlc_am_lte_tx(rlc_am_lte* parent_) : parent(parent_), logger(parent_->logger), pool(byte_buffer_pool::get_instance()), poll_retx_timer(parent_->timers->get_unique_timer()), status_prohibit_timer(parent_->timers->get_unique_timer()) { pthread_mutex_init(&mutex, NULL); } rlc_am_lte::rlc_am_lte_tx::~rlc_am_lte_tx() { pthread_mutex_destroy(&mutex); } void rlc_am_lte::rlc_am_lte_tx::set_bsr_callback(bsr_callback_t callback) { bsr_callback = callback; } bool rlc_am_lte::rlc_am_lte_tx::configure(const rlc_config_t& cfg_) { // TODO: add config checks cfg = cfg_.am; // check timers if (not poll_retx_timer.is_valid() or not status_prohibit_timer.is_valid()) { logger.error("Configuring RLC AM TX: timers not configured"); return false; } // configure timers if (cfg.t_status_prohibit > 0) { status_prohibit_timer.set(static_cast(cfg.t_status_prohibit), [this](uint32_t timerid) { timer_expired(timerid); }); } if (cfg.t_poll_retx > 0) { poll_retx_timer.set(static_cast(cfg.t_poll_retx), [this](uint32_t timerid) { timer_expired(timerid); }); } tx_sdu_queue.resize(cfg_.tx_queue_length); tx_enabled = true; return true; } void rlc_am_lte::rlc_am_lte_tx::stop() { empty_queue(); pthread_mutex_lock(&mutex); tx_enabled = false; if (parent->timers != nullptr && poll_retx_timer.is_valid()) { poll_retx_timer.stop(); } if (parent->timers != nullptr && status_prohibit_timer.is_valid()) { status_prohibit_timer.stop(); } vt_a = 0; vt_ms = RLC_AM_WINDOW_SIZE; vt_s = 0; poll_sn = 0; pdu_without_poll = 0; byte_without_poll = 0; // Drop all messages in TX window tx_window.clear(); // Drop all messages in RETX queue retx_queue.clear(); // Drop all SDU info in queue undelivered_sdu_info_queue.clear(); pthread_mutex_unlock(&mutex); } void rlc_am_lte::rlc_am_lte_tx::empty_queue() { pthread_mutex_lock(&mutex); // deallocate all SDUs in transmit queue while (tx_sdu_queue.size() > 0) { unique_byte_buffer_t buf = tx_sdu_queue.read(); } // deallocate SDU that is currently processed tx_sdu.reset(); pthread_mutex_unlock(&mutex); } void rlc_am_lte::rlc_am_lte_tx::reestablish() { stop(); tx_enabled = true; } bool rlc_am_lte::rlc_am_lte_tx::do_status() { return parent->rx.get_do_status(); } // Function is supposed to return as fast as possible bool rlc_am_lte::rlc_am_lte_tx::has_data() { return (((do_status() && not status_prohibit_timer.is_running())) || // if we have a status PDU to transmit (not retx_queue.empty()) || // if we have a retransmission (tx_sdu != NULL) || // if we are currently transmitting a SDU (not tx_sdu_queue.is_empty())); // or if there is a SDU queued up for transmission } uint32_t rlc_am_lte::rlc_am_lte_tx::get_buffer_state() { pthread_mutex_lock(&mutex); uint32_t n_bytes = 0; uint32_t n_sdus = 0; logger.debug("%s Buffer state - do_status=%s, status_prohibit_running=%s (%d/%d)", RB_NAME, do_status() ? "yes" : "no", status_prohibit_timer.is_running() ? "yes" : "no", status_prohibit_timer.time_elapsed(), status_prohibit_timer.duration()); // Bytes needed for status report if (do_status() && not status_prohibit_timer.is_running()) { n_bytes += parent->rx.get_status_pdu_length(); logger.debug("%s Buffer state - total status report: %d bytes", RB_NAME, n_bytes); } // Bytes needed for retx if (not retx_queue.empty()) { rlc_amd_retx_t retx = retx_queue.front(); logger.debug("%s Buffer state - retx - SN=%d, Segment: %s, %d:%d", RB_NAME, retx.sn, retx.is_segment ? "true" : "false", retx.so_start, retx.so_end); if (tx_window.end() != tx_window.find(retx.sn)) { int req_bytes = required_buffer_size(retx); if (req_bytes < 0) { logger.error("In get_buffer_state(): Removing retx.sn=%d from queue", retx.sn); retx_queue.pop_front(); } else { n_bytes += req_bytes; logger.debug("Buffer state - retx: %d bytes", n_bytes); } } } // Bytes needed for tx SDUs if (tx_window.size() < 1024) { n_sdus = tx_sdu_queue.size(); n_bytes += tx_sdu_queue.size_bytes(); if (tx_sdu != NULL) { n_sdus++; n_bytes += tx_sdu->N_bytes; } } // Room needed for header extensions? (integer rounding) if (n_sdus > 1) { n_bytes += ((n_sdus - 1) * 1.5) + 0.5; } // Room needed for fixed header of data PDUs if (n_bytes > 0 && n_sdus > 0) { n_bytes += 2; // Two bytes for fixed header with SN length = 10 logger.debug("%s Total buffer state - %d SDUs (%d B)", RB_NAME, n_sdus, n_bytes); } pthread_mutex_unlock(&mutex); return n_bytes; } int rlc_am_lte::rlc_am_lte_tx::write_sdu(unique_byte_buffer_t sdu) { pthread_mutex_lock(&mutex); if (!tx_enabled) { pthread_mutex_unlock(&mutex); return SRSLTE_ERROR; } if (sdu.get() == nullptr) { logger.warning("NULL SDU pointer in write_sdu()"); pthread_mutex_unlock(&mutex); return SRSLTE_ERROR; } // Get SDU info pdcp_sdu_info_t info = {}; info.sn = sdu->md.pdcp_sn; // Store SDU uint8_t* msg_ptr = sdu->msg; uint32_t nof_bytes = sdu->N_bytes; srslte::error_type ret = tx_sdu_queue.try_write(std::move(sdu)); if (ret) { logger.info(msg_ptr, nof_bytes, "%s Tx SDU (%d B, tx_sdu_queue_len=%d)", RB_NAME, nof_bytes, tx_sdu_queue.size()); } else { // in case of fail, the try_write returns back the sdu logger.warning(ret.error()->msg, ret.error()->N_bytes, "[Dropped SDU] %s Tx SDU (%d B, tx_sdu_queue_len=%d)", RB_NAME, ret.error()->N_bytes, tx_sdu_queue.size()); pthread_mutex_unlock(&mutex); return SRSLTE_ERROR; } // Store SDU info logger.debug( "Storing PDCP SDU info in queue. PDCP_SN=%d, Queue Size=%ld", info.sn, undelivered_sdu_info_queue.size()); uint32_t info_count = undelivered_sdu_info_queue.count(info.sn); if (info_count != 0) { logger.error("PDCP SDU info already exists. SN=%d", info.sn); pthread_mutex_unlock(&mutex); return SRSLTE_ERROR; } undelivered_sdu_info_queue[info.sn] = info; pthread_mutex_unlock(&mutex); return SRSLTE_SUCCESS; } void rlc_am_lte::rlc_am_lte_tx::discard_sdu(uint32_t discard_sn) { if (!tx_enabled) { return; } logger.warning("Discard SDU not implemented yet"); } bool rlc_am_lte::rlc_am_lte_tx::sdu_queue_is_full() { return tx_sdu_queue.is_full(); } int rlc_am_lte::rlc_am_lte_tx::read_pdu(uint8_t* payload, uint32_t nof_bytes) { pthread_mutex_lock(&mutex); int pdu_size = 0; if (not tx_enabled) { goto unlock_and_exit; } logger.debug("MAC opportunity - %d bytes", nof_bytes); logger.debug("tx_window size - %zu PDUs", tx_window.size()); if (not tx_enabled) { logger.debug("RLC entity not active. Not generating PDU."); goto unlock_and_exit; } // Tx STATUS if requested if (do_status() && not status_prohibit_timer.is_running()) { pdu_size = build_status_pdu(payload, nof_bytes); goto unlock_and_exit; } // Section 5.2.2.3 in TS 36.311, if tx_window is full and retx_queue empty, retransmit PDU if (tx_window.size() >= RLC_AM_WINDOW_SIZE && retx_queue.empty()) { retransmit_pdu(); } // RETX if required if (not retx_queue.empty()) { pdu_size = build_retx_pdu(payload, nof_bytes); if (pdu_size > 0) { goto unlock_and_exit; } } // Build a PDU from SDUs pdu_size = build_data_pdu(payload, nof_bytes); unlock_and_exit: pthread_mutex_unlock(&mutex); return pdu_size; } void rlc_am_lte::rlc_am_lte_tx::timer_expired(uint32_t timeout_id) { pthread_mutex_lock(&mutex); if (poll_retx_timer.is_valid() && poll_retx_timer.id() == timeout_id) { logger.debug("%s Poll reTx timer expired after %dms", RB_NAME, poll_retx_timer.duration()); // Section 5.2.2.3 in TS 36.311, schedule PDU for retransmission if // (a) both tx and retx buffer are empty, or // (b) no new data PDU can be transmitted (tx window is full) if ((retx_queue.empty() && tx_sdu_queue.size() == 0) || tx_window.size() >= RLC_AM_WINDOW_SIZE) { retransmit_pdu(); } } pthread_mutex_unlock(&mutex); if (bsr_callback) { bsr_callback(parent->lcid, get_buffer_state(), 0); } } void rlc_am_lte::rlc_am_lte_tx::retransmit_pdu() { if (not tx_window.empty()) { // select PDU in tx window for retransmission std::map::iterator it = tx_window.begin(); logger.info("%s Schedule SN=%d for reTx.", RB_NAME, it->first); rlc_amd_retx_t retx = {}; retx.is_segment = false; retx.so_start = 0; retx.so_end = it->second.buf->N_bytes; retx.sn = it->first; retx_queue.push_back(retx); } } /**************************************************************************** * Helper functions ***************************************************************************/ /** * Called when building a RLC PDU for checking whether the poll bit needs * to be set. * * Note that this is called from a PHY worker thread. * * @return True if a status PDU needs to be requested, false otherwise. */ bool rlc_am_lte::rlc_am_lte_tx::poll_required() { if (cfg.poll_pdu > 0 && pdu_without_poll > static_cast(cfg.poll_pdu)) { return true; } if (cfg.poll_byte > 0 && byte_without_poll > static_cast(cfg.poll_byte)) { return true; } if (poll_retx_timer.is_valid() && poll_retx_timer.is_expired()) { // re-arming of timer is handled by caller return true; } if (tx_window.size() >= RLC_AM_WINDOW_SIZE) { return true; } if (tx_sdu_queue.size() == 0 && retx_queue.empty()) { return true; } /* According to 5.2.2.1 in 36.322 v13.3.0 a poll should be requested if * the entire AM window is unacknowledged, i.e. no new PDU can be transmitted. * However, it seems more appropiate to request more often if polling * is disabled otherwise, e.g. every N PDUs. */ if (cfg.poll_pdu == 0 && cfg.poll_byte == 0 && vt_s % poll_periodicity == 0) { return true; } return false; } int rlc_am_lte::rlc_am_lte_tx::build_status_pdu(uint8_t* payload, uint32_t nof_bytes) { int pdu_len = parent->rx.get_status_pdu(&tx_status, nof_bytes); logger.debug("%s", rlc_am_status_pdu_to_string(&tx_status).c_str()); if (pdu_len > 0 && nof_bytes >= static_cast(pdu_len)) { logger.info("%s Tx status PDU - %s", RB_NAME, rlc_am_status_pdu_to_string(&tx_status).c_str()); parent->rx.reset_status(); if (cfg.t_status_prohibit > 0 && status_prohibit_timer.is_valid()) { // re-arm timer status_prohibit_timer.run(); } debug_state(); pdu_len = rlc_am_write_status_pdu(&tx_status, payload); } else { logger.info("%s Cannot tx status PDU - %d bytes available, %d bytes required", RB_NAME, nof_bytes, pdu_len); pdu_len = 0; } return pdu_len; } int rlc_am_lte::rlc_am_lte_tx::build_retx_pdu(uint8_t* payload, uint32_t nof_bytes) { // Check there is at least 1 element before calling front() if (retx_queue.empty()) { logger.error("In build_retx_pdu(): retx_queue is empty"); return -1; } rlc_amd_retx_t retx = retx_queue.front(); // Sanity check - drop any retx SNs not present in tx_window while (tx_window.end() == tx_window.find(retx.sn)) { retx_queue.pop_front(); if (!retx_queue.empty()) { retx = retx_queue.front(); } else { logger.info("In build_retx_pdu(): retx_queue is empty during sanity check, sn=%d", retx.sn); return 0; } } // Is resegmentation needed? int req_size = required_buffer_size(retx); if (req_size < 0) { logger.error("In build_retx_pdu(): Removing retx.sn=%d from queue", retx.sn); retx_queue.pop_front(); return -1; } if (retx.is_segment || req_size > static_cast(nof_bytes)) { logger.debug("%s build_retx_pdu - resegmentation required", RB_NAME); return build_segment(payload, nof_bytes, retx); } // Update & write header rlc_amd_pdu_header_t new_header = tx_window[retx.sn].header; new_header.p = 0; // Set poll bit pdu_without_poll++; byte_without_poll += (tx_window[retx.sn].buf->N_bytes + rlc_am_packed_length(&new_header)); logger.info("%s pdu_without_poll: %d", RB_NAME, pdu_without_poll); logger.info("%s byte_without_poll: %d", RB_NAME, byte_without_poll); if (poll_required()) { new_header.p = 1; // vt_s won't change for reTx, so don't update poll_sn pdu_without_poll = 0; byte_without_poll = 0; if (poll_retx_timer.is_valid()) { // re-arm timer (will be stopped when status PDU is received) poll_retx_timer.run(); } } uint8_t* ptr = payload; rlc_am_write_data_pdu_header(&new_header, &ptr); memcpy(ptr, tx_window[retx.sn].buf->msg, tx_window[retx.sn].buf->N_bytes); retx_queue.pop_front(); tx_window[retx.sn].retx_count++; if (tx_window[retx.sn].retx_count >= cfg.max_retx_thresh) { logger.warning("%s Signaling max number of reTx=%d for for SN=%d", RB_NAME, tx_window[retx.sn].retx_count, retx.sn); parent->rrc->max_retx_attempted(); } logger.info(payload, tx_window[retx.sn].buf->N_bytes, "%s Tx PDU SN=%d (%d B) (attempt %d/%d)", RB_NAME, retx.sn, tx_window[retx.sn].buf->N_bytes, tx_window[retx.sn].retx_count + 1, cfg.max_retx_thresh); logger.debug("%s", rlc_amd_pdu_header_to_string(new_header).c_str()); debug_state(); return (ptr - payload) + tx_window[retx.sn].buf->N_bytes; } int rlc_am_lte::rlc_am_lte_tx::build_segment(uint8_t* payload, uint32_t nof_bytes, rlc_amd_retx_t retx) { if (tx_window[retx.sn].buf == NULL) { logger.error("In build_segment: retx.sn=%d has null buffer", retx.sn); return 0; } if (!retx.is_segment) { retx.so_start = 0; retx.so_end = tx_window[retx.sn].buf->N_bytes; } // Construct new header rlc_amd_pdu_header_t new_header; rlc_amd_pdu_header_t old_header = tx_window[retx.sn].header; pdu_without_poll++; byte_without_poll += (tx_window[retx.sn].buf->N_bytes + rlc_am_packed_length(&new_header)); logger.info("%s pdu_without_poll: %d", RB_NAME, pdu_without_poll); logger.info("%s byte_without_poll: %d", RB_NAME, byte_without_poll); new_header.dc = RLC_DC_FIELD_DATA_PDU; new_header.rf = 1; new_header.fi = RLC_FI_FIELD_NOT_START_OR_END_ALIGNED; new_header.sn = old_header.sn; new_header.lsf = 0; new_header.so = retx.so_start; new_header.N_li = 0; new_header.p = 0; if (poll_required()) { logger.debug("%s setting poll bit to request status", RB_NAME); new_header.p = 1; // vt_s won't change for reTx, so don't update poll_sn pdu_without_poll = 0; byte_without_poll = 0; if (poll_retx_timer.is_valid()) { poll_retx_timer.run(); } } uint32_t head_len = 0; uint32_t pdu_space = 0; head_len = rlc_am_packed_length(&new_header); if (old_header.N_li > 0) { // Make sure we can fit at least one N_li element if old header contained at least one head_len += 2; } if (nof_bytes <= head_len) { logger.info("%s Cannot build a PDU segment - %d bytes available, %d bytes required for header", RB_NAME, nof_bytes, head_len); return 0; } pdu_space = nof_bytes - head_len; if (pdu_space < (retx.so_end - retx.so_start)) { retx.so_end = retx.so_start + pdu_space; } // Need to rebuild the li table & update fi based on so_start and so_end if (retx.so_start == 0 && rlc_am_start_aligned(old_header.fi)) { new_header.fi &= RLC_FI_FIELD_NOT_END_ALIGNED; // segment is start aligned } uint32_t lower = 0; uint32_t upper = 0; uint32_t li = 0; for (uint32_t i = 0; i < old_header.N_li; i++) { if (lower >= retx.so_end) { break; } if (pdu_space <= 2) { break; } upper += old_header.li[i]; head_len = rlc_am_packed_length(&new_header); // Accomodate some extra space for for LIs if old header contained segments too head_len += old_header.N_li; pdu_space = nof_bytes - head_len; if (pdu_space < (retx.so_end - retx.so_start)) { retx.so_end = retx.so_start + pdu_space; } if (upper > retx.so_start && lower < retx.so_end) { // Current SDU is needed li = upper - lower; if (upper > retx.so_end) { li -= upper - retx.so_end; } if (lower < retx.so_start) { li -= retx.so_start - lower; } if (lower > 0 && lower == retx.so_start) { new_header.fi &= RLC_FI_FIELD_NOT_END_ALIGNED; // segment start is aligned with this SDU } if (upper == retx.so_end) { new_header.fi &= RLC_FI_FIELD_NOT_START_ALIGNED; // segment end is aligned with this SDU } new_header.li[new_header.N_li] = li; // only increment N_li if more SDU (segments) are being added if (retx.so_end > upper) { new_header.N_li++; } } lower += old_header.li[i]; } // Update retx_queue if (tx_window[retx.sn].buf->N_bytes == retx.so_end) { retx_queue.pop_front(); new_header.lsf = 1; if (rlc_am_end_aligned(old_header.fi)) { new_header.fi &= RLC_FI_FIELD_NOT_START_ALIGNED; // segment is end aligned } } else if (retx_queue.front().so_end == retx.so_end) { retx_queue.pop_front(); } else { retx_queue.front().is_segment = true; retx_queue.front().so_start = retx.so_end; } // increment counter for retx of first segment if (retx.so_start == 0) { tx_window[retx.sn].retx_count++; } // Write header and pdu uint8_t* ptr = payload; rlc_am_write_data_pdu_header(&new_header, &ptr); uint8_t* data = &tx_window[retx.sn].buf->msg[retx.so_start]; uint32_t len = retx.so_end - retx.so_start; memcpy(ptr, data, len); debug_state(); int pdu_len = (ptr - payload) + len; if (pdu_len > static_cast(nof_bytes)) { logger.error("%s Retx PDU segment length error. Available: %d, Used: %d", RB_NAME, nof_bytes, pdu_len); int header_len = (ptr - payload); logger.debug("%s Retx PDU segment length error. Header len: %d, Payload len: %d, N_li: %d", RB_NAME, header_len, len, new_header.N_li); } logger.info(payload, pdu_len, "%s Retx PDU segment SN=%d [so=%d] (%d B) (attempt %d/%d)", RB_NAME, retx.sn, retx.so_start, pdu_len, tx_window[retx.sn].retx_count + 1, cfg.max_retx_thresh); return pdu_len; } int rlc_am_lte::rlc_am_lte_tx::build_data_pdu(uint8_t* payload, uint32_t nof_bytes) { if (tx_sdu == NULL && tx_sdu_queue.is_empty()) { logger.info("No data available to be sent"); return 0; } // do not build any more PDU if window is already full if (tx_sdu == NULL && tx_window.size() >= RLC_AM_WINDOW_SIZE) { logger.info("Tx window full."); return 0; } unique_byte_buffer_t pdu = srslte::make_byte_buffer(); if (pdu == NULL) { #ifdef RLC_AM_BUFFER_DEBUG srslte::console("Fatal Error: Could not allocate PDU in build_data_pdu()\n"); srslte::console("tx_window size: %zd PDUs\n", tx_window.size()); srslte::console("vt_a = %d, vt_ms = %d, vt_s = %d, poll_sn = %d\n", vt_a, vt_ms, vt_s, poll_sn); srslte::console("retx_queue size: %zd PDUs\n", retx_queue.size()); std::map::iterator txit; for (txit = tx_window.begin(); txit != tx_window.end(); txit++) { srslte::console("tx_window - SN=%d\n", txit->first); } exit(-1); #else logger.error("Fatal Error: Couldn't allocate PDU in build_data_pdu()."); return 0; #endif } rlc_amd_pdu_header_t header = {}; header.dc = RLC_DC_FIELD_DATA_PDU; header.fi = RLC_FI_FIELD_START_AND_END_ALIGNED; header.sn = vt_s; uint32_t head_len = rlc_am_packed_length(&header); uint32_t to_move = 0; uint32_t last_li = 0; uint32_t pdu_space = SRSLTE_MIN(nof_bytes, pdu->get_tailroom()); uint8_t* pdu_ptr = pdu->msg; if (pdu_space <= head_len) { logger.info( "%s Cannot build a PDU - %d bytes available, %d bytes required for header", RB_NAME, nof_bytes, head_len); return 0; } logger.debug("%s Building PDU - pdu_space: %d, head_len: %d ", RB_NAME, pdu_space, head_len); // Check for SDU segment if (tx_sdu != NULL) { to_move = ((pdu_space - head_len) >= tx_sdu->N_bytes) ? tx_sdu->N_bytes : pdu_space - head_len; memcpy(pdu_ptr, tx_sdu->msg, to_move); last_li = to_move; pdu_ptr += to_move; pdu->N_bytes += to_move; tx_sdu->N_bytes -= to_move; tx_sdu->msg += to_move; auto info_it = undelivered_sdu_info_queue.find(tx_sdu->md.pdcp_sn); if (info_it == undelivered_sdu_info_queue.end()) { logger.error("Could not find PDCP SN in SDU info queue (segment). PDCP_SN=%d", tx_sdu->md.pdcp_sn); return 0; } undelivered_sdu_info_queue.at(tx_sdu->md.pdcp_sn).rlc_sn_info_list.push_back({header.sn, false}); if (tx_sdu->N_bytes == 0) { logger.debug("%s Complete SDU scheduled for tx.", RB_NAME); undelivered_sdu_info_queue[tx_sdu->md.pdcp_sn].fully_txed = true; tx_sdu.reset(); } if (pdu_space > to_move) { pdu_space -= SRSLTE_MIN(to_move, pdu->get_tailroom()); } else { pdu_space = 0; } header.fi |= RLC_FI_FIELD_NOT_START_ALIGNED; // First byte does not correspond to first byte of SDU logger.debug("%s Building PDU - added SDU segment (len:%d) - pdu_space: %d, head_len: %d ", RB_NAME, to_move, pdu_space, head_len); } // Pull SDUs from queue while (pdu_space > head_len && tx_sdu_queue.size() > 0 && header.N_li < RLC_AM_WINDOW_SIZE) { if (last_li > 0) { header.li[header.N_li] = last_li; header.N_li++; } head_len = rlc_am_packed_length(&header); if (head_len >= pdu_space) { if (header.N_li > 0) { header.N_li--; } break; } tx_sdu = tx_sdu_queue.read(); to_move = ((pdu_space - head_len) >= tx_sdu->N_bytes) ? tx_sdu->N_bytes : pdu_space - head_len; memcpy(pdu_ptr, tx_sdu->msg, to_move); last_li = to_move; pdu_ptr += to_move; pdu->N_bytes += to_move; tx_sdu->N_bytes -= to_move; tx_sdu->msg += to_move; auto info_it = undelivered_sdu_info_queue.find(tx_sdu->md.pdcp_sn); if (info_it == undelivered_sdu_info_queue.end()) { logger.error("Could not find PDCP SN in SDU info queue. PDCP_SN=%d", tx_sdu->md.pdcp_sn); return 0; } info_it->second.rlc_sn_info_list.push_back({header.sn, false}); if (tx_sdu->N_bytes == 0) { logger.debug("%s Complete SDU scheduled for tx. PDCP SN=%d", RB_NAME, tx_sdu->md.pdcp_sn); undelivered_sdu_info_queue[tx_sdu->md.pdcp_sn].fully_txed = true; tx_sdu.reset(); } if (pdu_space > to_move) { pdu_space -= to_move; } else { pdu_space = 0; } logger.debug("%s Building PDU - added SDU segment (len:%d) - pdu_space: %d, head_len: %d ", RB_NAME, to_move, pdu_space, head_len); } // Make sure, at least one SDU (segment) has been added until this point if (pdu->N_bytes == 0) { logger.error("Generated empty RLC PDU."); return 0; } if (tx_sdu != NULL) { header.fi |= RLC_FI_FIELD_NOT_END_ALIGNED; // Last byte does not correspond to last byte of SDU } // Set Poll bit pdu_without_poll++; byte_without_poll += (pdu->N_bytes + head_len); logger.debug("%s pdu_without_poll: %d", RB_NAME, pdu_without_poll); logger.debug("%s byte_without_poll: %d", RB_NAME, byte_without_poll); if (poll_required()) { logger.debug("%s setting poll bit to request status", RB_NAME); header.p = 1; poll_sn = vt_s; pdu_without_poll = 0; byte_without_poll = 0; if (poll_retx_timer.is_valid()) { poll_retx_timer.run(); } } // Set SN header.sn = vt_s; vt_s = (vt_s + 1) % MOD; // Place PDU in tx_window, write header and TX tx_window[header.sn].buf = std::move(pdu); tx_window[header.sn].header = header; tx_window[header.sn].is_acked = false; tx_window[header.sn].retx_count = 0; const byte_buffer_t* buffer_ptr = tx_window[header.sn].buf.get(); uint8_t* ptr = payload; rlc_am_write_data_pdu_header(&header, &ptr); memcpy(ptr, buffer_ptr->msg, buffer_ptr->N_bytes); int total_len = (ptr - payload) + buffer_ptr->N_bytes; logger.info(payload, total_len, "%s Tx PDU SN=%d (%d B)", RB_NAME, header.sn, total_len); logger.debug("%s", rlc_amd_pdu_header_to_string(header).c_str()); debug_state(); return total_len; } void rlc_am_lte::rlc_am_lte_tx::handle_control_pdu(uint8_t* payload, uint32_t nof_bytes) { if (not tx_enabled) { return; } pthread_mutex_lock(&mutex); logger.info(payload, nof_bytes, "%s Rx control PDU", RB_NAME); rlc_status_pdu_t status; rlc_am_read_status_pdu(payload, nof_bytes, &status); logger.info("%s Rx Status PDU: %s", RB_NAME, rlc_am_status_pdu_to_string(&status).c_str()); // Sec 5.2.2.2, stop poll reTx timer if status PDU comprises a positive _or_ negative acknowledgement // for the RLC data PDU with sequence number poll_sn if (poll_retx_timer.is_valid() && (TX_MOD_BASE(poll_sn) < TX_MOD_BASE(status.ack_sn))) { logger.debug("%s Stopping pollRetx timer", RB_NAME); poll_retx_timer.stop(); } // flush retx queue to avoid unordered SNs, we expect the Rx to request lost PDUs again if (status.N_nack > 0) { retx_queue.clear(); } // Handle ACKs and NACKs std::map::iterator it; bool update_vt_a = true; uint32_t i = vt_a; std::vector notify_info_vec = {}; while (TX_MOD_BASE(i) < TX_MOD_BASE(status.ack_sn) && TX_MOD_BASE(i) < TX_MOD_BASE(vt_s)) { bool nack = false; for (uint32_t j = 0; j < status.N_nack; j++) { if (status.nacks[j].nack_sn == i) { nack = true; update_vt_a = false; it = tx_window.find(i); if (tx_window.end() != it) { if (!retx_queue_has_sn(i)) { rlc_amd_retx_t retx = {}; retx.sn = i; retx.is_segment = false; retx.so_start = 0; retx.so_end = it->second.buf->N_bytes; if (status.nacks[j].has_so) { // sanity check if (status.nacks[j].so_start >= it->second.buf->N_bytes) { // print error but try to send original PDU again logger.info("SO_start is larger than original PDU (%d >= %d)", status.nacks[j].so_start, it->second.buf->N_bytes); status.nacks[j].so_start = 0; } // check for special SO_end value if (status.nacks[j].so_end == 0x7FFF) { status.nacks[j].so_end = it->second.buf->N_bytes; } else { retx.so_end = status.nacks[j].so_end + 1; } if (status.nacks[j].so_start < it->second.buf->N_bytes && status.nacks[j].so_end <= it->second.buf->N_bytes) { retx.is_segment = true; retx.so_start = status.nacks[j].so_start; } else { logger.warning("%s invalid segment NACK received for SN %d. so_start: %d, so_end: %d, N_bytes: %d", RB_NAME, i, status.nacks[j].so_start, status.nacks[j].so_end, it->second.buf->N_bytes); } } retx_queue.push_back(retx); } } } } if (!nack) { // ACKed SNs get marked and removed from tx_window if possible if (tx_window.count(i) > 0) { it = tx_window.find(i); if (it != tx_window.end()) { update_notification_ack_info(it->second, notify_info_vec); if (update_vt_a) { tx_window.erase(it); vt_a = (vt_a + 1) % MOD; vt_ms = (vt_ms + 1) % MOD; } } } } i = (i + 1) % MOD; } if (not notify_info_vec.empty()) { parent->pdcp->notify_delivery(parent->lcid, notify_info_vec); // Remove all SDUs that were fully acked for (uint32_t acked_pdcp_sn : notify_info_vec) { logger.debug("Erasing SDU info: PDCP_SN=%d", acked_pdcp_sn); size_t erased = undelivered_sdu_info_queue.erase(acked_pdcp_sn); if (erased == 0) { logger.error("Could not find info to erase: SN=%d", acked_pdcp_sn); } } } debug_state(); pthread_mutex_unlock(&mutex); } /* * Helper function to detect whether a PDU has been fully ack'ed and the PDCP needs to be notified about it * @tx_pdu: RLC PDU that was ack'ed. * @notify_info_vec: Vector which will keep track of the PDCP PDU SNs that have been fully ack'ed. */ void rlc_am_lte::rlc_am_lte_tx::update_notification_ack_info(const rlc_amd_tx_pdu_t& tx_pdu, std::vector& notify_info_vec) { logger.debug("Updating ACK info: RLC SN=%d, number of notified SDU=%ld, number of undelivered SDUs=%ld", tx_pdu.header.sn, notify_info_vec.size(), undelivered_sdu_info_queue.size()); // Iterate over all undelivered SDUs for (auto& info_it : undelivered_sdu_info_queue) { // Iterate over all SNs that were TX'ed uint32_t pdcp_sn = info_it.first; auto& info = info_it.second; for (auto& rlc_sn_info : info.rlc_sn_info_list) { // Mark this SN as acked, if necessary if (rlc_sn_info.is_acked == false && rlc_sn_info.sn == tx_pdu.header.sn) { rlc_sn_info.is_acked = true; } } // Check wether the SDU was fully acked if (info.fully_txed and not info.fully_acked) { // Check if all SNs were ACK'ed info.fully_acked = std::all_of(info.rlc_sn_info_list.begin(), info.rlc_sn_info_list.end(), [](rlc_sn_info_t rlc_sn_info) { return rlc_sn_info.is_acked; }); if (info.fully_acked) { notify_info_vec.push_back(pdcp_sn); } } } } void rlc_am_lte::rlc_am_lte_tx::debug_state() { logger.debug("%s vt_a = %d, vt_ms = %d, vt_s = %d, poll_sn = %d", RB_NAME, vt_a, vt_ms, vt_s, poll_sn); } int rlc_am_lte::rlc_am_lte_tx::required_buffer_size(rlc_amd_retx_t retx) { if (!retx.is_segment) { if (tx_window.count(retx.sn) == 1) { if (tx_window[retx.sn].buf) { return rlc_am_packed_length(&tx_window[retx.sn].header) + tx_window[retx.sn].buf->N_bytes; } else { logger.warning("retx.sn=%d has null ptr in required_buffer_size()", retx.sn); return -1; } } else { logger.warning("retx.sn=%d does not exist in required_buffer_size()", retx.sn); return -1; } } // Construct new header rlc_amd_pdu_header_t new_header; rlc_amd_pdu_header_t old_header = tx_window[retx.sn].header; new_header.dc = RLC_DC_FIELD_DATA_PDU; new_header.rf = 1; new_header.p = 0; new_header.fi = RLC_FI_FIELD_NOT_START_OR_END_ALIGNED; new_header.sn = old_header.sn; new_header.lsf = 0; new_header.so = retx.so_start; new_header.N_li = 0; // Need to rebuild the li table & update fi based on so_start and so_end if (retx.so_start != 0 && rlc_am_start_aligned(old_header.fi)) { new_header.fi &= RLC_FI_FIELD_NOT_END_ALIGNED; // segment is start aligned } uint32_t lower = 0; uint32_t upper = 0; uint32_t li = 0; for (uint32_t i = 0; i < old_header.N_li; i++) { if (lower >= retx.so_end) { break; } upper += old_header.li[i]; if (upper > retx.so_start && lower < retx.so_end) { // Current SDU is needed li = upper - lower; if (upper > retx.so_end) { li -= upper - retx.so_end; } if (lower < retx.so_start) { li -= retx.so_start - lower; } if (lower > 0 && lower == retx.so_start) { new_header.fi &= RLC_FI_FIELD_NOT_END_ALIGNED; // segment start is aligned with this SDU } if (upper == retx.so_end) { new_header.fi &= RLC_FI_FIELD_NOT_START_ALIGNED; // segment end is aligned with this SDU } new_header.li[new_header.N_li++] = li; } lower += old_header.li[i]; } // if(tx_window[retx.sn].buf->N_bytes != retx.so_end) { // if(new_header.N_li > 0) // new_header.N_li--; // No li for last segment // } return rlc_am_packed_length(&new_header) + (retx.so_end - retx.so_start); } bool rlc_am_lte::rlc_am_lte_tx::retx_queue_has_sn(uint32_t sn) { std::deque::iterator q_it; for (q_it = retx_queue.begin(); q_it != retx_queue.end(); ++q_it) { if (q_it->sn == sn) { return true; } } return false; } /**************************************************************************** * Rx subclass implementation ***************************************************************************/ rlc_am_lte::rlc_am_lte_rx::rlc_am_lte_rx(rlc_am_lte* parent_) : parent(parent_), pool(byte_buffer_pool::get_instance()), logger(parent_->logger), reordering_timer(parent_->timers->get_unique_timer()) { pthread_mutex_init(&mutex, NULL); } rlc_am_lte::rlc_am_lte_rx::~rlc_am_lte_rx() { pthread_mutex_destroy(&mutex); } bool rlc_am_lte::rlc_am_lte_rx::configure(rlc_am_config_t cfg_) { // TODO: add config checks cfg = cfg_; // check timers if (not reordering_timer.is_valid()) { logger.error("Configuring RLC AM TX: timers not configured"); return false; } // configure timer if (cfg.t_reordering > 0) { reordering_timer.set(static_cast(cfg.t_reordering), [this](uint32_t tid) { timer_expired(tid); }); } return true; } void rlc_am_lte::rlc_am_lte_rx::reestablish() { stop(); } void rlc_am_lte::rlc_am_lte_rx::stop() { pthread_mutex_lock(&mutex); if (parent->timers != nullptr && reordering_timer.is_valid()) { reordering_timer.stop(); } rx_sdu.reset(); vr_r = 0; vr_mr = RLC_AM_WINDOW_SIZE; vr_x = 0; vr_ms = 0; vr_h = 0; poll_received = false; do_status = false; // Drop all messages in RX segments rx_segments.clear(); // Drop all messages in RX window rx_window.clear(); pthread_mutex_unlock(&mutex); } /** Called from stack thread when MAC has received a new RLC PDU * * @param payload Pointer to payload * @param nof_bytes Payload length * @param header Reference to PDU header (unpacked by caller) */ void rlc_am_lte::rlc_am_lte_rx::handle_data_pdu(uint8_t* payload, uint32_t nof_bytes, rlc_amd_pdu_header_t& header) { std::map::iterator it; logger.info(payload, nof_bytes, "%s Rx data PDU SN=%d (%d B)", RB_NAME, header.sn, nof_bytes); logger.debug("%s", rlc_amd_pdu_header_to_string(header).c_str()); // sanity check for segments not exceeding PDU length if (header.N_li > 0) { uint32_t segments_len = 0; for (uint32_t i = 0; i < header.N_li; i++) { segments_len += header.li[i]; if (segments_len > nof_bytes) { logger.info("Dropping corrupted PDU (segments_len=%d > pdu_len=%d)", segments_len, nof_bytes); return; } } } if (!inside_rx_window(header.sn)) { if (header.p) { logger.info("%s Status packet requested through polling bit", RB_NAME); do_status = true; } logger.info("%s SN=%d outside rx window [%d:%d] - discarding", RB_NAME, header.sn, vr_r, vr_mr); return; } it = rx_window.find(header.sn); if (rx_window.end() != it) { if (header.p) { logger.info("%s Status packet requested through polling bit", RB_NAME); do_status = true; } logger.info("%s Discarding duplicate SN=%d", RB_NAME, header.sn); return; } // Write to rx window rlc_amd_rx_pdu_t pdu; pdu.buf = srslte::make_byte_buffer(); if (pdu.buf == NULL) { #ifdef RLC_AM_BUFFER_DEBUG srslte::console("Fatal Error: Couldn't allocate PDU in handle_data_pdu().\n"); exit(-1); #else logger.error("Fatal Error: Couldn't allocate PDU in handle_data_pdu()."); return; #endif } pdu.buf->set_timestamp(); // check available space for payload if (nof_bytes > pdu.buf->get_tailroom()) { logger.error("%s Discarding SN=%d of size %d B (available space %d B)", RB_NAME, header.sn, nof_bytes, pdu.buf->get_tailroom()); return; } memcpy(pdu.buf->msg, payload, nof_bytes); pdu.buf->N_bytes = nof_bytes; pdu.header = header; rx_window[header.sn] = std::move(pdu); // Update vr_h if (RX_MOD_BASE(header.sn) >= RX_MOD_BASE(vr_h)) { vr_h = (header.sn + 1) % MOD; } // Update vr_ms it = rx_window.find(vr_ms); while (rx_window.end() != it) { vr_ms = (vr_ms + 1) % MOD; it = rx_window.find(vr_ms); } // Check poll bit if (header.p) { logger.info("%s Status packet requested through polling bit", RB_NAME); poll_received = true; // 36.322 v10 Section 5.2.3 if (RX_MOD_BASE(header.sn) < RX_MOD_BASE(vr_ms) || RX_MOD_BASE(header.sn) >= RX_MOD_BASE(vr_mr)) { do_status = true; } // else delay for reordering timer } // Reassemble and deliver SDUs reassemble_rx_sdus(); // Update reordering variables and timers (36.322 v10.0.0 Section 5.1.3.2.3) if (reordering_timer.is_valid()) { if (reordering_timer.is_running()) { if (vr_x == vr_r || (!inside_rx_window(vr_x) && vr_x != vr_mr)) { logger.debug("Stopping reordering timer."); reordering_timer.stop(); } else { logger.debug("Leave reordering timer running."); } debug_state(); } if (not reordering_timer.is_running()) { if (RX_MOD_BASE(vr_h) > RX_MOD_BASE(vr_r)) { logger.debug("Starting reordering timer."); reordering_timer.run(); vr_x = vr_h; } else { logger.debug("Leave reordering timer stopped."); } debug_state(); } } debug_state(); } void rlc_am_lte::rlc_am_lte_rx::handle_data_pdu_segment(uint8_t* payload, uint32_t nof_bytes, rlc_amd_pdu_header_t& header) { std::map::iterator it; logger.info(payload, nof_bytes, "%s Rx data PDU segment of SN=%d (%d B), SO=%d, N_li=%d", RB_NAME, header.sn, nof_bytes, header.so, header.N_li); logger.debug("%s", rlc_amd_pdu_header_to_string(header).c_str()); // Check inside rx window if (!inside_rx_window(header.sn)) { if (header.p) { logger.info("%s Status packet requested through polling bit", RB_NAME); do_status = true; } logger.info("%s SN=%d outside rx window [%d:%d] - discarding", RB_NAME, header.sn, vr_r, vr_mr); return; } rlc_amd_rx_pdu_t segment; segment.buf = srslte::make_byte_buffer(); if (segment.buf == NULL) { #ifdef RLC_AM_BUFFER_DEBUG srslte::console("Fatal Error: Couldn't allocate PDU in handle_data_pdu_segment().\n"); exit(-1); #else logger.error("Fatal Error: Couldn't allocate PDU in handle_data_pdu_segment()."); return; #endif } if (segment.buf->get_tailroom() < nof_bytes) { logger.info("Dropping corrupted segment SN=%d, not enough space to fit %d B", header.sn, nof_bytes); return; } memcpy(segment.buf->msg, payload, nof_bytes); segment.buf->N_bytes = nof_bytes; segment.header = header; // Check if we already have a segment from the same PDU it = rx_segments.find(header.sn); if (rx_segments.end() != it) { if (header.p) { logger.info("%s Status packet requested through polling bit", RB_NAME); do_status = true; } // Add segment to PDU list and check for complete // NOTE: MAY MOVE. Preference would be to capture by value, and then move; but header is stack allocated if (add_segment_and_check(&it->second, &segment)) { rx_segments.erase(it); } } else { // Create new PDU segment list and write to rx_segments rlc_amd_rx_pdu_segments_t pdu; pdu.segments.push_back(std::move(segment)); rx_segments[header.sn] = std::move(pdu); // Update vr_h if (RX_MOD_BASE(header.sn) >= RX_MOD_BASE(vr_h)) { vr_h = (header.sn + 1) % MOD; } // Check poll bit if (header.p) { logger.info("%s Status packet requested through polling bit", RB_NAME); poll_received = true; // 36.322 v10 Section 5.2.3 if (RX_MOD_BASE(header.sn) < RX_MOD_BASE(vr_ms) || RX_MOD_BASE(header.sn) >= RX_MOD_BASE(vr_mr)) { do_status = true; } // else delay for reordering timer } } #ifdef RLC_AM_BUFFER_DEBUG print_rx_segments(); #endif debug_state(); } void rlc_am_lte::rlc_am_lte_rx::reassemble_rx_sdus() { uint32_t len = 0; if (rx_sdu == NULL) { rx_sdu = srslte::make_byte_buffer(); if (rx_sdu == NULL) { #ifdef RLC_AM_BUFFER_DEBUG srslte::console("Fatal Error: Could not allocate PDU in reassemble_rx_sdus() (1)\n"); exit(-1); #else logger.error("Fatal Error: Could not allocate PDU in reassemble_rx_sdus() (1)"); return; #endif } } // Iterate through rx_window, assembling and delivering SDUs while (rx_window.end() != rx_window.find(vr_r)) { // Handle any SDU segments for (uint32_t i = 0; i < rx_window[vr_r].header.N_li; i++) { len = rx_window[vr_r].header.li[i]; logger.debug(rx_window[vr_r].buf->msg, len, "Handling segment %d/%d of length %d B of SN=%d", i + 1, rx_window[vr_r].header.N_li, len, vr_r); // sanity check to avoid zero-size SDUs if (len == 0) { break; } if (rx_sdu->get_tailroom() >= len) { if ((rx_window[vr_r].buf->msg - rx_window[vr_r].buf->buffer) + len < SRSLTE_MAX_BUFFER_SIZE_BYTES) { if (rx_window[vr_r].buf->N_bytes < len) { logger.error("Dropping corrupted SN=%d", vr_r); rx_sdu.reset(); goto exit; } // store timestamp of the first segment when starting to assemble SDUs if (rx_sdu->N_bytes == 0) { rx_sdu->set_timestamp(rx_window[vr_r].buf->get_timestamp()); } memcpy(&rx_sdu->msg[rx_sdu->N_bytes], rx_window[vr_r].buf->msg, len); rx_sdu->N_bytes += len; rx_window[vr_r].buf->msg += len; rx_window[vr_r].buf->N_bytes -= len; logger.info(rx_sdu->msg, rx_sdu->N_bytes, "%s Rx SDU (%d B)", RB_NAME, rx_sdu->N_bytes); sdu_rx_latency_ms.push(std::chrono::duration_cast( std::chrono::high_resolution_clock::now() - rx_sdu->get_timestamp()) .count()); parent->pdcp->write_pdu(parent->lcid, std::move(rx_sdu)); parent->metrics.num_rx_sdus++; rx_sdu = srslte::make_byte_buffer(); if (rx_sdu == nullptr) { #ifdef RLC_AM_BUFFER_DEBUG srslte::console("Fatal Error: Could not allocate PDU in reassemble_rx_sdus() (2)\n"); exit(-1); #else logger.error("Fatal Error: Could not allocate PDU in reassemble_rx_sdus() (2)"); return; #endif } } else { int buf_len = rx_window[vr_r].buf->msg - rx_window[vr_r].buf->buffer; logger.error("Cannot read %d bytes from rx_window. vr_r=%d, msg-buffer=%d B", len, vr_r, buf_len); rx_sdu.reset(); goto exit; } } else { logger.error("Cannot fit RLC PDU in SDU buffer, dropping both."); rx_sdu.reset(); goto exit; } } // Handle last segment len = rx_window[vr_r].buf->N_bytes; logger.debug(rx_window[vr_r].buf->msg, len, "Handling last segment of length %d B of SN=%d", len, vr_r); if (rx_sdu->get_tailroom() >= len) { // store timestamp of the first segment when starting to assemble SDUs if (rx_sdu->N_bytes == 0) { rx_sdu->set_timestamp(rx_window[vr_r].buf->get_timestamp()); } memcpy(&rx_sdu->msg[rx_sdu->N_bytes], rx_window[vr_r].buf->msg, len); rx_sdu->N_bytes += rx_window[vr_r].buf->N_bytes; } else { printf("Cannot fit RLC PDU in SDU buffer (tailroom=%d, len=%d), dropping both. Erasing SN=%d.\n", rx_sdu->get_tailroom(), len, vr_r); rx_sdu.reset(); goto exit; } if (rlc_am_end_aligned(rx_window[vr_r].header.fi)) { logger.info(rx_sdu->msg, rx_sdu->N_bytes, "%s Rx SDU (%d B)", RB_NAME, rx_sdu->N_bytes); sdu_rx_latency_ms.push(std::chrono::duration_cast( std::chrono::high_resolution_clock::now() - rx_sdu->get_timestamp()) .count()); parent->pdcp->write_pdu(parent->lcid, std::move(rx_sdu)); parent->metrics.num_rx_sdus++; rx_sdu = srslte::make_byte_buffer(); if (rx_sdu == NULL) { #ifdef RLC_AM_BUFFER_DEBUG srslte::console("Fatal Error: Could not allocate PDU in reassemble_rx_sdus() (3)\n"); exit(-1); #else logger.error("Fatal Error: Could not allocate PDU in reassemble_rx_sdus() (3)"); return; #endif } } exit: // Move the rx_window logger.debug("Erasing SN=%d.", vr_r); // also erase any segments of this SN std::map::iterator it; it = rx_segments.find(vr_r); if (rx_segments.end() != it) { logger.debug("Erasing segments of SN=%d", vr_r); std::list::iterator segit; for (segit = it->second.segments.begin(); segit != it->second.segments.end(); ++segit) { logger.debug(" Erasing segment of SN=%d SO=%d Len=%d N_li=%d", segit->header.sn, segit->header.so, segit->buf->N_bytes, segit->header.N_li); } it->second.segments.clear(); } rx_window.erase(vr_r); vr_r = (vr_r + 1) % MOD; vr_mr = (vr_mr + 1) % MOD; } } void rlc_am_lte::rlc_am_lte_rx::reset_status() { pthread_mutex_lock(&mutex); do_status = false; poll_received = false; pthread_mutex_unlock(&mutex); } bool rlc_am_lte::rlc_am_lte_rx::get_do_status() { return do_status; } void rlc_am_lte::rlc_am_lte_rx::write_pdu(uint8_t* payload, const uint32_t nof_bytes) { if (nof_bytes < 1) { return; } pthread_mutex_lock(&mutex); if (rlc_am_is_control_pdu(payload)) { // unlock mutex and pass to Tx subclass pthread_mutex_unlock(&mutex); parent->tx.handle_control_pdu(payload, nof_bytes); } else { rlc_amd_pdu_header_t header = {}; uint32_t payload_len = nof_bytes; rlc_am_read_data_pdu_header(&payload, &payload_len, &header); if (payload_len > nof_bytes) { logger.info("Dropping corrupted PDU (%d B). Remaining length after header %d B.", nof_bytes, payload_len); pthread_mutex_unlock(&mutex); return; } if (header.rf) { handle_data_pdu_segment(payload, payload_len, header); } else { handle_data_pdu(payload, payload_len, header); } pthread_mutex_unlock(&mutex); } } uint32_t rlc_am_lte::rlc_am_lte_rx::get_rx_buffered_bytes() { uint32_t buff_size = 0; pthread_mutex_lock(&mutex); for (const auto& pdu : rx_window) { buff_size += pdu.second.buf->N_bytes; } pthread_mutex_unlock(&mutex); return buff_size; } uint32_t rlc_am_lte::rlc_am_lte_rx::get_sdu_rx_latency_ms() { uint32_t latency = 0; pthread_mutex_lock(&mutex); latency = sdu_rx_latency_ms.value(); pthread_mutex_unlock(&mutex); return latency; } /** * Function called from stack thread when timer has expired * * @param timeout_id */ void rlc_am_lte::rlc_am_lte_rx::timer_expired(uint32_t timeout_id) { pthread_mutex_lock(&mutex); if (reordering_timer.is_valid() and reordering_timer.id() == timeout_id) { logger.debug("%s reordering timeout expiry - updating vr_ms (was %d)", RB_NAME, vr_ms); // 36.322 v10 Section 5.1.3.2.4 vr_ms = vr_x; std::map::iterator it = rx_window.find(vr_ms); while (rx_window.end() != it) { vr_ms = (vr_ms + 1) % MOD; it = rx_window.find(vr_ms); } if (poll_received) { do_status = true; } if (RX_MOD_BASE(vr_h) > RX_MOD_BASE(vr_ms)) { reordering_timer.run(); vr_x = vr_h; } debug_state(); } pthread_mutex_unlock(&mutex); } // Called from Tx object to pack status PDU that doesn't exceed a given size int rlc_am_lte::rlc_am_lte_rx::get_status_pdu(rlc_status_pdu_t* status, const uint32_t max_pdu_size) { pthread_mutex_lock(&mutex); status->N_nack = 0; status->ack_sn = vr_r; // start with lower edge of the rx window // We don't use segment NACKs - just NACK the full PDU uint32_t i = vr_r; while (RX_MOD_BASE(i) <= RX_MOD_BASE(vr_ms) && status->N_nack < RLC_AM_WINDOW_SIZE) { if (rx_window.find(i) != rx_window.end() || i == vr_ms) { // only update ACK_SN if this SN has been received, or if we reached the maximum possible SN status->ack_sn = i; } else { status->nacks[status->N_nack].nack_sn = i; status->N_nack++; } // make sure we don't exceed grant size if (rlc_am_packed_length(status) > max_pdu_size) { logger.debug("Status PDU too big (%d > %d)", rlc_am_packed_length(status), max_pdu_size); if (status->N_nack >= 1 && status->N_nack < RLC_AM_WINDOW_SIZE) { logger.debug("Removing last NACK SN=%d", status->nacks[status->N_nack].nack_sn); status->N_nack--; // make sure we don't have the current ACK_SN in the NACK list if (rlc_am_is_valid_status_pdu(*status) == false) { // No space to send any NACKs logger.debug("Resetting N_nack to zero"); status->N_nack = 0; } } else { logger.warning("Failed to generate small enough status PDU (packed_len=%d, max_pdu_size=%d, status->N_nack=%d)", rlc_am_packed_length(status), max_pdu_size, status->N_nack); } break; } i = (i + 1) % MOD; } pthread_mutex_unlock(&mutex); return rlc_am_packed_length(status); } // Called from Tx object to obtain length of the full status PDU int rlc_am_lte::rlc_am_lte_rx::get_status_pdu_length() { pthread_mutex_lock(&mutex); rlc_status_pdu_t status = {}; status.ack_sn = vr_ms; uint32_t i = vr_r; while (RX_MOD_BASE(i) < RX_MOD_BASE(vr_ms) && status.N_nack < RLC_AM_WINDOW_SIZE) { if (rx_window.find(i) == rx_window.end()) { status.N_nack++; } i = (i + 1) % MOD; } pthread_mutex_unlock(&mutex); return rlc_am_packed_length(&status); } void rlc_am_lte::rlc_am_lte_rx::print_rx_segments() { std::map::iterator it; std::stringstream ss; ss << "rx_segments:" << std::endl; for (it = rx_segments.begin(); it != rx_segments.end(); it++) { std::list::iterator segit; for (segit = it->second.segments.begin(); segit != it->second.segments.end(); segit++) { ss << " SN=" << segit->header.sn << " SO:" << segit->header.so << " N:" << segit->buf->N_bytes << " N_li: " << segit->header.N_li << std::endl; } } logger.debug("%s", ss.str().c_str()); } // NOTE: Preference would be to capture by value, and then move; but header is stack allocated bool rlc_am_lte::rlc_am_lte_rx::add_segment_and_check(rlc_amd_rx_pdu_segments_t* pdu, rlc_amd_rx_pdu_t* segment) { // Find segment insertion point in the list of segments auto it1 = pdu->segments.begin(); while (it1 != pdu->segments.end() && (*it1).header.so < segment->header.so) { // Increment iterator it1++; } // Check if the insertion point was found if (it1 != pdu->segments.end()) { // Found insertion point rlc_amd_rx_pdu_t& s = *it1; if (s.header.so == segment->header.so) { // Same Segment offset if (segment->buf->N_bytes > s.buf->N_bytes) { // replace if the new one is bigger s = std::move(*segment); } else { // Ignore otherwise } } else if (s.header.so > segment->header.so) { pdu->segments.insert(it1, std::move(*segment)); } } else { // Either the new segment is the latest or the only one, push back pdu->segments.push_back(std::move(*segment)); } // Check for complete uint32_t so = 0; std::list::iterator it, tmpit; for (it = pdu->segments.begin(); it != pdu->segments.end(); /* Do not increment */) { // Check that there is no gap between last segment and current; overlap allowed if (so < it->header.so) { // return return false; } // Check if segment is overlapped if (it->header.so + it->buf->N_bytes <= so) { // completely overlapped with previous segments, erase it = pdu->segments.erase(it); // Returns next iterator } else { // Update segment offset it shall not go backwards so = SRSLTE_MAX(so, it->header.so + it->buf->N_bytes); it++; // Increments iterator } } // Check for last segment flag available if (!pdu->segments.back().header.lsf) { return false; } // We have all segments of the PDU - reconstruct and handle rlc_amd_pdu_header_t header; header.dc = RLC_DC_FIELD_DATA_PDU; header.rf = 0; header.p = 0; header.fi = RLC_FI_FIELD_START_AND_END_ALIGNED; header.sn = pdu->segments.front().header.sn; header.lsf = 0; header.so = 0; header.N_li = 0; // Reconstruct fi field header.fi |= (pdu->segments.front().header.fi & RLC_FI_FIELD_NOT_START_ALIGNED); header.fi |= (pdu->segments.back().header.fi & RLC_FI_FIELD_NOT_END_ALIGNED); logger.debug("Starting header reconstruction of %zd segments", pdu->segments.size()); // Reconstruct li fields uint16_t count = 0; uint16_t carryover = 0; for (it = pdu->segments.begin(); it != pdu->segments.end(); it++) { logger.debug(" Handling %d PDU segments", it->header.N_li); for (uint32_t i = 0; i < it->header.N_li; i++) { header.li[header.N_li] = it->header.li[i]; if (i == 0) { header.li[header.N_li] += carryover; } logger.debug(" - adding segment %d/%d (%d B, SO=%d, carryover=%d, count=%d)", i + 1, it->header.N_li, header.li[header.N_li], header.so, carryover, count); header.N_li++; count += it->header.li[i]; carryover = 0; } if (count <= it->buf->N_bytes) { carryover += it->buf->N_bytes - count; logger.debug("Incremented carryover (it->buf->N_bytes=%d, count=%d). New carryover=%d", it->buf->N_bytes, count, carryover); } else { // Next segment would be too long, recalculate carryover header.N_li--; carryover = it->buf->N_bytes - (count - header.li[header.N_li]); logger.debug("Recalculated carryover=%d (it->buf->N_bytes=%d, count=%d, header.li[header.N_li]=%d)", carryover, it->buf->N_bytes, count, header.li[header.N_li]); } tmpit = it; if (rlc_am_end_aligned(it->header.fi) && ++tmpit != pdu->segments.end()) { logger.debug("Header is end-aligned, overwrite header.li[%d]=%d", header.N_li, carryover); header.li[header.N_li] = carryover; header.N_li++; carryover = 0; } count = 0; // set Poll bit if any of the segments had it set header.p |= it->header.p; } logger.debug("Finished header reconstruction of %zd segments", pdu->segments.size()); // Copy data unique_byte_buffer_t full_pdu = srslte::make_byte_buffer(); if (full_pdu == NULL) { #ifdef RLC_AM_BUFFER_DEBUG srslte::console("Fatal Error: Could not allocate PDU in add_segment_and_check()\n"); exit(-1); #else logger.error("Fatal Error: Could not allocate PDU in add_segment_and_check()"); return false; #endif } for (it = pdu->segments.begin(); it != pdu->segments.end(); it++) { // By default, the segment is not copied. It could be it is fully overlapped with previous segments uint32_t overlap = 0; uint32_t n = 0; // Check if the segment has non-overlapped bytes if (it->header.so + it->buf->N_bytes > full_pdu->N_bytes) { // Calculate overlap and number of bytes overlap = full_pdu->N_bytes - it->header.so; n = it->buf->N_bytes - overlap; } // Copy data itself memcpy(&full_pdu->msg[full_pdu->N_bytes], &it->buf->msg[overlap], n); full_pdu->N_bytes += n; } handle_data_pdu(full_pdu->msg, full_pdu->N_bytes, header); return true; } bool rlc_am_lte::rlc_am_lte_rx::inside_rx_window(const int16_t sn) { if (RX_MOD_BASE(sn) >= RX_MOD_BASE(static_cast(vr_r)) && RX_MOD_BASE(sn) < RX_MOD_BASE(vr_mr)) { return true; } else { return false; } } void rlc_am_lte::rlc_am_lte_rx::debug_state() { logger.debug("%s vr_r = %d, vr_mr = %d, vr_x = %d, vr_ms = %d, vr_h = %d", RB_NAME, vr_r, vr_mr, vr_x, vr_ms, vr_h); } /**************************************************************************** * Header pack/unpack helper functions * Ref: 3GPP TS 36.322 v10.0.0 Section 6.2.1 ***************************************************************************/ // Read header from pdu struct, don't strip header void rlc_am_read_data_pdu_header(byte_buffer_t* pdu, rlc_amd_pdu_header_t* header) { uint8_t* ptr = pdu->msg; uint32_t n = 0; rlc_am_read_data_pdu_header(&ptr, &n, header); } // Read header from raw pointer, strip header void rlc_am_read_data_pdu_header(uint8_t** payload, uint32_t* nof_bytes, rlc_amd_pdu_header_t* header) { uint8_t ext; uint8_t* ptr = *payload; header->dc = static_cast((*ptr >> 7) & 0x01); if (RLC_DC_FIELD_DATA_PDU == header->dc) { // Fixed part header->rf = ((*ptr >> 6) & 0x01); header->p = ((*ptr >> 5) & 0x01); header->fi = static_cast((*ptr >> 3) & 0x03); ext = ((*ptr >> 2) & 0x01); header->sn = (*ptr & 0x03) << 8; // 2 bits SN ptr++; header->sn |= (*ptr & 0xFF); // 8 bits SN ptr++; if (header->rf) { header->lsf = ((*ptr >> 7) & 0x01); header->so = (*ptr & 0x7F) << 8; // 7 bits of SO ptr++; header->so |= (*ptr & 0xFF); // 8 bits of SO ptr++; } // Extension part header->N_li = 0; while (ext) { if (header->N_li % 2 == 0) { ext = ((*ptr >> 7) & 0x01); header->li[header->N_li] = (*ptr & 0x7F) << 4; // 7 bits of LI ptr++; header->li[header->N_li] |= (*ptr & 0xF0) >> 4; // 4 bits of LI header->N_li++; } else { ext = (*ptr >> 3) & 0x01; header->li[header->N_li] = (*ptr & 0x07) << 8; // 3 bits of LI ptr++; header->li[header->N_li] |= (*ptr & 0xFF); // 8 bits of LI header->N_li++; ptr++; } } // Account for padding if N_li is odd if (header->N_li % 2 == 1) { ptr++; } *nof_bytes -= ptr - *payload; *payload = ptr; } } // Write header to pdu struct void rlc_am_write_data_pdu_header(rlc_amd_pdu_header_t* header, byte_buffer_t* pdu) { uint8_t* ptr = pdu->msg; rlc_am_write_data_pdu_header(header, &ptr); pdu->N_bytes += ptr - pdu->msg; } // Write header to pointer & move pointer void rlc_am_write_data_pdu_header(rlc_amd_pdu_header_t* header, uint8_t** payload) { uint32_t i; uint8_t ext = (header->N_li > 0) ? 1 : 0; uint8_t* ptr = *payload; // Fixed part *ptr = (header->dc & 0x01) << 7; *ptr |= (header->rf & 0x01) << 6; *ptr |= (header->p & 0x01) << 5; *ptr |= (header->fi & 0x03) << 3; *ptr |= (ext & 0x01) << 2; *ptr |= (header->sn & 0x300) >> 8; // 2 bits SN ptr++; *ptr = (header->sn & 0xFF); // 8 bits SN ptr++; // Segment part if (header->rf) { *ptr = (header->lsf & 0x01) << 7; *ptr |= (header->so & 0x7F00) >> 8; // 7 bits of SO ptr++; *ptr = (header->so & 0x00FF); // 8 bits of SO ptr++; } // Extension part i = 0; while (i < header->N_li) { ext = ((i + 1) == header->N_li) ? 0 : 1; *ptr = (ext & 0x01) << 7; // 1 bit header *ptr |= (header->li[i] & 0x7F0) >> 4; // 7 bits of LI ptr++; *ptr = (header->li[i] & 0x00F) << 4; // 4 bits of LI i++; if (i < header->N_li) { ext = ((i + 1) == header->N_li) ? 0 : 1; *ptr |= (ext & 0x01) << 3; // 1 bit header *ptr |= (header->li[i] & 0x700) >> 8; // 3 bits of LI ptr++; *ptr = (header->li[i] & 0x0FF); // 8 bits of LI ptr++; i++; } } // Pad if N_li is odd if (header->N_li % 2 == 1) { ptr++; } *payload = ptr; } void rlc_am_read_status_pdu(byte_buffer_t* pdu, rlc_status_pdu_t* status) { rlc_am_read_status_pdu(pdu->msg, pdu->N_bytes, status); } void rlc_am_read_status_pdu(uint8_t* payload, uint32_t nof_bytes, rlc_status_pdu_t* status) { uint32_t i; uint8_t ext1, ext2; bit_buffer_t tmp; uint8_t* ptr = tmp.msg; srslte_bit_unpack_vector(payload, tmp.msg, nof_bytes * 8); tmp.N_bits = nof_bytes * 8; rlc_dc_field_t dc = static_cast(srslte_bit_pack(&ptr, 1)); if (RLC_DC_FIELD_CONTROL_PDU == dc) { uint8_t cpt = srslte_bit_pack(&ptr, 3); // 3-bit Control PDU Type (0 == status) if (0 == cpt) { status->ack_sn = srslte_bit_pack(&ptr, 10); // 10 bits ACK_SN ext1 = srslte_bit_pack(&ptr, 1); // 1 bits E1 status->N_nack = 0; while (ext1) { status->nacks[status->N_nack].nack_sn = srslte_bit_pack(&ptr, 10); ext1 = srslte_bit_pack(&ptr, 1); // 1 bits E1 ext2 = srslte_bit_pack(&ptr, 1); // 1 bits E2 if (ext2) { status->nacks[status->N_nack].has_so = true; status->nacks[status->N_nack].so_start = srslte_bit_pack(&ptr, 15); status->nacks[status->N_nack].so_end = srslte_bit_pack(&ptr, 15); } status->N_nack++; } } } } void rlc_am_write_status_pdu(rlc_status_pdu_t* status, byte_buffer_t* pdu) { pdu->N_bytes = rlc_am_write_status_pdu(status, pdu->msg); } int rlc_am_write_status_pdu(rlc_status_pdu_t* status, uint8_t* payload) { uint32_t i; uint8_t ext1; bit_buffer_t tmp; uint8_t* ptr = tmp.msg; srslte_bit_unpack(RLC_DC_FIELD_CONTROL_PDU, &ptr, 1); // D/C srslte_bit_unpack(0, &ptr, 3); // CPT (0 == STATUS) srslte_bit_unpack(status->ack_sn, &ptr, 10); // 10 bit ACK_SN ext1 = (status->N_nack == 0) ? 0 : 1; srslte_bit_unpack(ext1, &ptr, 1); // E1 for (i = 0; i < status->N_nack; i++) { srslte_bit_unpack(status->nacks[i].nack_sn, &ptr, 10); // 10 bit NACK_SN ext1 = ((status->N_nack - 1) == i) ? 0 : 1; srslte_bit_unpack(ext1, &ptr, 1); // E1 if (status->nacks[i].has_so) { srslte_bit_unpack(1, &ptr, 1); // E2 srslte_bit_unpack(status->nacks[i].so_start, &ptr, 15); srslte_bit_unpack(status->nacks[i].so_end, &ptr, 15); } else { srslte_bit_unpack(0, &ptr, 1); // E2 } } // Pad tmp.N_bits = ptr - tmp.msg; uint8_t n_pad = 8 - (tmp.N_bits % 8); srslte_bit_unpack(0, &ptr, n_pad); tmp.N_bits = ptr - tmp.msg; // Pack bits srslte_bit_pack_vector(tmp.msg, payload, tmp.N_bits); return tmp.N_bits / 8; } bool rlc_am_is_valid_status_pdu(const rlc_status_pdu_t& status) { for (uint32_t i = 0; i < status.N_nack; ++i) { if (status.nacks[i].nack_sn == status.ack_sn) { return false; } } return true; } uint32_t rlc_am_packed_length(rlc_amd_pdu_header_t* header) { uint32_t len = 2; // Fixed part is 2 bytes if (header->rf) { len += 2; // Segment header is 2 bytes } len += header->N_li * 1.5 + 0.5; // Extension part - integer rounding up return len; } uint32_t rlc_am_packed_length(rlc_status_pdu_t* status) { uint32_t len_bits = 15; // Fixed part is 15 bits for (uint32_t i = 0; i < status->N_nack; i++) { if (status->nacks[i].has_so) { len_bits += 42; // 10 bits SN, 2 bits ext, 15 bits so_start, 15 bits so_end } else { len_bits += 12; // 10 bits SN, 2 bits ext } } return (len_bits + 7) / 8; // Convert to bytes - integer rounding up } bool rlc_am_is_pdu_segment(uint8_t* payload) { return ((*(payload) >> 6) & 0x01) == 1; } std::string rlc_am_status_pdu_to_string(rlc_status_pdu_t* status) { std::stringstream ss; ss << "ACK_SN = " << status->ack_sn; ss << ", N_nack = " << status->N_nack; if (status->N_nack > 0) { ss << ", NACK_SN = "; for (uint32_t i = 0; i < status->N_nack; i++) { if (status->nacks[i].has_so) { ss << "[" << status->nacks[i].nack_sn << " " << status->nacks[i].so_start << ":" << status->nacks[i].so_end << "]"; } else { ss << "[" << status->nacks[i].nack_sn << "]"; } } } return ss.str(); } std::string rlc_am_undelivered_sdu_info_to_string(const std::map& info_queue) { std::string str = "\n"; for (const auto& info_it : info_queue) { uint32_t pdcp_sn = info_it.first; auto info = info_it.second; std::string tmp_str = fmt::format("\tPDCP_SN = {}, RLC_SNs = [", pdcp_sn); for (auto rlc_sn_info : info.rlc_sn_info_list) { std::string tmp_str2; if (rlc_sn_info.is_acked) { tmp_str2 = fmt::format("ACK={}, ", rlc_sn_info.sn); } else { tmp_str2 = fmt::format("NACK={}, ", rlc_sn_info.sn); } tmp_str += tmp_str2; } tmp_str += "]\n"; str += tmp_str; } return str; } std::string rlc_amd_pdu_header_to_string(const rlc_amd_pdu_header_t& header) { std::stringstream ss; ss << "[" << rlc_dc_field_text[header.dc]; ss << ", RF=" << (header.rf ? "1" : "0"); ss << ", P=" << (header.p ? "1" : "0"); ss << ", FI=" << (header.fi ? "1" : "0"); ss << ", SN=" << header.sn; ss << ", LSF=" << (header.lsf ? "1" : "0"); ss << ", SO=" << header.so; ss << ", N_li=" << header.N_li; if (header.N_li > 0) { ss << " ("; for (uint32_t i = 0; i < header.N_li; i++) { ss << header.li[i] << ", "; } ss << ")"; } ss << "]"; return ss.str(); } bool rlc_am_start_aligned(const uint8_t fi) { return (fi == RLC_FI_FIELD_START_AND_END_ALIGNED || fi == RLC_FI_FIELD_NOT_END_ALIGNED); } bool rlc_am_end_aligned(const uint8_t fi) { return (fi == RLC_FI_FIELD_START_AND_END_ALIGNED || fi == RLC_FI_FIELD_NOT_START_ALIGNED); } bool rlc_am_is_unaligned(const uint8_t fi) { return (fi == RLC_FI_FIELD_NOT_START_OR_END_ALIGNED); } bool rlc_am_not_start_aligned(const uint8_t fi) { return (fi == RLC_FI_FIELD_NOT_START_ALIGNED || fi == RLC_FI_FIELD_NOT_START_OR_END_ALIGNED); } } // namespace srslte