/* * Copyright 2013-2019 Software Radio Systems Limited * * This file is part of srsLTE. * * srsLTE is free software: you can redistribute it and/or modify * it under the terms of the GNU Affero General Public License as * published by the Free Software Foundation, either version 3 of * the License, or (at your option) any later version. * * srsLTE is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Affero General Public License for more details. * * A copy of the GNU Affero General Public License can be found in * the LICENSE file in the top-level directory of this distribution * and at http://www.gnu.org/licenses/. * */ #ifndef SRSENB_RRC_H #define SRSENB_RRC_H #include "rrc_metrics.h" #include "srsenb/hdr/stack/upper/common_enb.h" #include "srslte/asn1/rrc_asn1.h" #include "srslte/common/block_queue.h" #include "srslte/common/buffer_pool.h" #include "srslte/common/common.h" #include "srslte/common/log.h" #include "srslte/common/stack_procedure.h" #include "srslte/common/timeout.h" #include "srslte/interfaces/enb_interfaces.h" #include #include namespace srsenb { struct rrc_cfg_sr_t { uint32_t period; asn1::rrc::sched_request_cfg_c::setup_s_::dsr_trans_max_e_ dsr_max; uint32_t nof_prb; uint32_t sf_mapping[80]; uint32_t nof_subframes; }; enum rrc_cfg_cqi_mode_t { RRC_CFG_CQI_MODE_PERIODIC = 0, RRC_CFG_CQI_MODE_APERIODIC, RRC_CFG_CQI_MODE_N_ITEMS }; static const char rrc_cfg_cqi_mode_text[RRC_CFG_CQI_MODE_N_ITEMS][20] = {"periodic", "aperiodic"}; typedef struct { uint32_t sf_mapping[80]; uint32_t nof_subframes; uint32_t nof_prb; uint32_t period; uint32_t m_ri; bool simultaneousAckCQI; rrc_cfg_cqi_mode_t mode; } rrc_cfg_cqi_t; typedef struct { bool configured; asn1::rrc::lc_ch_cfg_s::ul_specific_params_s_ lc_cfg; asn1::rrc::pdcp_cfg_s pdcp_cfg; asn1::rrc::rlc_cfg_c rlc_cfg; } rrc_cfg_qci_t; //! Cell to measure for HO. Filled by cfg file parser. struct meas_cell_cfg_t { uint32_t earfcn; uint16_t pci; uint32_t eci; float q_offset; }; struct scell_cfg_t { uint32_t cell_id; bool cross_carrier_sched = false; uint32_t sched_cell_id; bool ul_allowed; }; // neigh measurement Cell info struct rrc_meas_cfg_t { std::vector meas_cells; std::vector meas_reports; asn1::rrc::quant_cfg_eutra_s quant_cfg; // uint32_t nof_meas_ids; // srslte::rrc_meas_id_t meas_ids[LIBLTE_RRC_MAX_MEAS_ID]; // TODO: Add blacklist cells // TODO: Add multiple meas configs }; // Cell/Sector configuration struct cell_cfg_t { uint32_t rf_port; uint32_t cell_id; uint16_t tac; uint32_t pci; uint16_t root_seq_idx; uint32_t dl_earfcn; float dl_freq_hz; uint32_t ul_earfcn; float ul_freq_hz; std::vector scell_list; }; #define MAX_NOF_QCI 10 struct rrc_cfg_t { asn1::rrc::sib_type1_s sib1; asn1::rrc::sib_info_item_c sibs[ASN1_RRC_MAX_SIB]; asn1::rrc::mac_main_cfg_s mac_cnfg; asn1::rrc::pusch_cfg_ded_s pusch_cfg; asn1::rrc::ant_info_ded_s antenna_info; asn1::rrc::pdsch_cfg_ded_s::p_a_e_ pdsch_cfg; rrc_cfg_sr_t sr_cfg; rrc_cfg_cqi_t cqi_cfg; rrc_cfg_qci_t qci_cfg[MAX_NOF_QCI]; srslte_cell_t cell; bool enable_mbsfn; uint32_t inactivity_timeout_ms; srslte::CIPHERING_ALGORITHM_ID_ENUM eea_preference_list[srslte::CIPHERING_ALGORITHM_ID_N_ITEMS]; srslte::INTEGRITY_ALGORITHM_ID_ENUM eia_preference_list[srslte::INTEGRITY_ALGORITHM_ID_N_ITEMS]; bool meas_cfg_present = false; rrc_meas_cfg_t meas_cfg; std::vector cell_list; uint32_t pci; // TODO: add this to srslte_cell_t? uint32_t dl_earfcn; // TODO: add this to srslte_cell_t? }; static const char rrc_state_text[RRC_STATE_N_ITEMS][100] = {"IDLE", "WAIT FOR CON SETUP COMPLETE", "WAIT FOR SECURITY MODE COMPLETE", "WAIT FOR UE CAPABILITIY INFORMATION", "WAIT FOR CON RECONF COMPLETE", "RRC CONNECTED", "RELEASE REQUEST"}; class rrc final : public rrc_interface_pdcp, public rrc_interface_mac, public rrc_interface_rlc, public rrc_interface_s1ap { public: rrc(); ~rrc(); void init(rrc_cfg_t* cfg, phy_interface_rrc_lte* phy, mac_interface_rrc* mac, rlc_interface_rrc* rlc, pdcp_interface_rrc* pdcp, s1ap_interface_rrc* s1ap, gtpu_interface_rrc* gtpu, srslte::timer_handler* timers_, srslte::log* log_rrc); void stop(); void get_metrics(rrc_metrics_t& m); void tti_clock(); // rrc_interface_mac void rl_failure(uint16_t rnti) override; void add_user(uint16_t rnti, const sched_interface::ue_cfg_t& init_ue_cfg) override; void upd_user(uint16_t new_rnti, uint16_t old_rnti) override; void set_activity_user(uint16_t rnti) override; bool is_paging_opportunity(uint32_t tti, uint32_t* payload_len) override; // rrc_interface_rlc void read_pdu_bcch_dlsch(uint32_t sib_idx, uint8_t* payload) override; void read_pdu_pcch(uint8_t* payload, uint32_t buffer_size) override; void max_retx_attempted(uint16_t rnti) override; // rrc_interface_s1ap void write_dl_info(uint16_t rnti, srslte::unique_byte_buffer_t sdu) override; void release_complete(uint16_t rnti) override; bool setup_ue_ctxt(uint16_t rnti, const asn1::s1ap::init_context_setup_request_s& msg) override; bool modify_ue_ctxt(uint16_t rnti, const asn1::s1ap::ue_context_mod_request_s& msg) override; bool setup_ue_erabs(uint16_t rnti, const asn1::s1ap::erab_setup_request_s& msg) override; bool release_erabs(uint32_t rnti) override; void add_paging_id(uint32_t ueid, const asn1::s1ap::ue_paging_id_c& UEPagingID) override; void ho_preparation_complete(uint16_t rnti, bool is_success, srslte::unique_byte_buffer_t rrc_container) override; // rrc_interface_pdcp void write_pdu(uint16_t rnti, uint32_t lcid, srslte::unique_byte_buffer_t pdu) override; uint32_t get_nof_users(); // logging typedef enum { Rx = 0, Tx } direction_t; template void log_rrc_message(const std::string& source, direction_t dir, const srslte::byte_buffer_t* pdu, const T& msg, const std::string& msg_type); class ue { public: class rrc_mobility; ue(rrc* outer_rrc, uint16_t rnti, const sched_interface::ue_cfg_t& ue_cfg); bool is_connected(); bool is_idle(); typedef enum { MSG3_RX_TIMEOUT = 0, ///< Msg3 has its own timeout to quickly remove fake UEs from random PRACHs UE_RESPONSE_RX_TIMEOUT, ///< General purpose timeout for responses to eNB requests UE_INACTIVITY_TIMEOUT, ///< UE inactivity timeout nulltype } activity_timeout_type_t; std::string to_string(const activity_timeout_type_t& type); void set_activity_timeout(const activity_timeout_type_t type); void set_activity(); void activity_timer_expired(); uint32_t rl_failure(); rrc_state_t get_state(); void send_connection_setup(bool is_setup = true); void send_connection_reest(); void send_connection_reject(); void send_connection_release(); void send_connection_reest_rej(); void send_connection_reconf(srslte::unique_byte_buffer_t sdu); void send_connection_reconf_new_bearer(const asn1::s1ap::erab_to_be_setup_list_bearer_su_req_l& e); void send_connection_reconf_upd(srslte::unique_byte_buffer_t pdu); void send_security_mode_command(); void send_ue_cap_enquiry(); void parse_ul_dcch(uint32_t lcid, srslte::unique_byte_buffer_t pdu); void handle_rrc_con_req(asn1::rrc::rrc_conn_request_s* msg); void handle_rrc_con_reest_req(asn1::rrc::rrc_conn_reest_request_r8_ies_s* msg); void handle_rrc_con_setup_complete(asn1::rrc::rrc_conn_setup_complete_s* msg, srslte::unique_byte_buffer_t pdu); void handle_rrc_reconf_complete(asn1::rrc::rrc_conn_recfg_complete_s* msg, srslte::unique_byte_buffer_t pdu); void handle_security_mode_complete(asn1::rrc::security_mode_complete_s* msg); void handle_security_mode_failure(asn1::rrc::security_mode_fail_s* msg); bool handle_ue_cap_info(asn1::rrc::ue_cap_info_s* msg); void set_bitrates(const asn1::s1ap::ue_aggregate_maximum_bitrate_s& rates); void set_security_capabilities(const asn1::s1ap::ue_security_cap_s& caps); void set_security_key(const asn1::fixed_bitstring<256, false, true>& key); bool setup_erabs(const asn1::s1ap::erab_to_be_setup_list_ctxt_su_req_l& e); bool setup_erabs(const asn1::s1ap::erab_to_be_setup_list_bearer_su_req_l& e); void setup_erab(uint8_t id, const asn1::s1ap::erab_level_qos_params_s& qos, const asn1::bounded_bitstring<1, 160, true, true>& addr, uint32_t teid_out, const asn1::unbounded_octstring* nas_pdu); bool release_erabs(); // handover void handle_ho_preparation_complete(bool is_success, srslte::unique_byte_buffer_t container); void notify_s1ap_ue_ctxt_setup_complete(); void notify_s1ap_ue_erab_setup_response(const asn1::s1ap::erab_to_be_setup_list_bearer_su_req_l& e); int sr_allocate(uint32_t period, uint8_t* I_sr, uint16_t* N_pucch_sr); void sr_get(uint8_t* I_sr, uint16_t* N_pucch_sr); int sr_free(); int cqi_allocate(uint32_t period, uint16_t* pmi_idx, uint16_t* n_pucch); void cqi_get(uint16_t* pmi_idx, uint16_t* n_pucch); int cqi_free(); int ri_get(uint32_t m_ri, uint16_t* ri_idx); bool select_security_algorithms(); void send_dl_ccch(asn1::rrc::dl_ccch_msg_s* dl_ccch_msg); void send_dl_dcch(asn1::rrc::dl_dcch_msg_s* dl_dcch_msg, srslte::unique_byte_buffer_t pdu = srslte::unique_byte_buffer_t()); uint16_t rnti = 0; rrc* parent = nullptr; bool connect_notified = false; bool is_csfb = false; private: // args srslte::byte_buffer_pool* pool = nullptr; srslte::timer_handler::unique_timer activity_timer; // cached for ease of context transfer asn1::rrc::rrc_conn_recfg_s last_rrc_conn_recfg; asn1::rrc::security_algorithm_cfg_s last_security_mode_cmd; asn1::rrc::establishment_cause_e establishment_cause; std::unique_ptr mobility_handler; // S-TMSI for this UE bool has_tmsi = false; uint32_t m_tmsi = 0; uint8_t mmec = 0; // state sched_interface::ue_cfg_t current_sched_ue_cfg; uint32_t rlf_cnt = 0; uint8_t transaction_id = 0; rrc_state_t state = RRC_STATE_IDLE; std::map srbs; std::map drbs; uint8_t k_enb[32]; // Provided by MME uint8_t k_rrc_enc[32]; uint8_t k_rrc_int[32]; uint8_t k_up_enc[32]; uint8_t k_up_int[32]; // Not used: only for relay nodes (3GPP 33.401 Annex A.7) srslte::CIPHERING_ALGORITHM_ID_ENUM cipher_algo; srslte::INTEGRITY_ALGORITHM_ID_ENUM integ_algo; asn1::s1ap::ue_aggregate_maximum_bitrate_s bitrates; asn1::s1ap::ue_security_cap_s security_capabilities; bool eutra_capabilities_unpacked = false; asn1::rrc::ue_eutra_cap_s eutra_capabilities; typedef struct { uint8_t id; asn1::s1ap::erab_level_qos_params_s qos_params; asn1::bounded_bitstring<1, 160, true, true> address; uint32_t teid_out; uint32_t teid_in; } erab_t; std::map erabs; int sr_sched_sf_idx = 0; int sr_sched_prb_idx = 0; bool sr_allocated = false; uint32_t sr_N_pucch = 0; uint32_t sr_I = 0; uint32_t cqi_pucch = 0; uint32_t cqi_idx = 0; bool cqi_allocated = false; int cqi_sched_sf_idx = 0; int cqi_sched_prb_idx = 0; int get_drbid_config(asn1::rrc::drb_to_add_mod_s* drb, int drbid); bool nas_pending = false; srslte::byte_buffer_t erab_info; ///< UE's Physical layer dedicated configuration phy_interface_rrc_lte::phy_rrc_dedicated_list_t phy_rrc_dedicated_list = {}; /** * Setups the PCell physical layer dedicated configuration of the UE. This method shall be called from the * connection setup only. * @param phys_cfg_ded ASN1 Physical layer configuration dedicated */ void apply_setup_phy_config(const asn1::rrc::phys_cfg_ded_s& phys_cfg_ded); /** * Reconfigures the PCell and SCell physical layer dedicated configuration of the UE. This method shall be called * from the connection reconfiguration. `apply_setup_phy_config` shall not be called before/after. It automatically * parses the PCell and SCell reconfiguration. * * @param reconfig_r8 ASN1 reconfiguration message */ void apply_reconf_phy_config(const asn1::rrc::rrc_conn_recfg_r8_ies_s& reconfig_r8); }; // class ue private: // args srslte::timer_handler* timers = nullptr; srslte::byte_buffer_pool* pool = nullptr; phy_interface_rrc_lte* phy = nullptr; mac_interface_rrc* mac = nullptr; rlc_interface_rrc* rlc = nullptr; pdcp_interface_rrc* pdcp = nullptr; gtpu_interface_rrc* gtpu = nullptr; s1ap_interface_rrc* s1ap = nullptr; srslte::log* rrc_log = nullptr; // state std::map > users; // NOTE: has to have fixed addr std::map pending_paging; std::vector sib_buffer; void process_release_complete(uint16_t rnti); void process_rl_failure(uint16_t rnti); void rem_user(uint16_t rnti); uint32_t generate_sibs(); void configure_mbsfn_sibs(asn1::rrc::sib_type2_s* sib2, asn1::rrc::sib_type13_r9_s* sib13); void config_mac(); void parse_ul_dcch(uint16_t rnti, uint32_t lcid, srslte::unique_byte_buffer_t pdu); void parse_ul_ccch(uint16_t rnti, srslte::unique_byte_buffer_t pdu); void configure_security(uint16_t rnti, uint32_t lcid, uint8_t* k_rrc_enc, uint8_t* k_rrc_int, uint8_t* k_up_enc, uint8_t* k_up_int, srslte::CIPHERING_ALGORITHM_ID_ENUM cipher_algo, srslte::INTEGRITY_ALGORITHM_ID_ENUM integ_algo); void enable_integrity(uint16_t rnti, uint32_t lcid); void enable_encryption(uint16_t rnti, uint32_t lcid); srslte::byte_buffer_t byte_buf_paging; typedef struct { uint16_t rnti; uint32_t lcid; srslte::unique_byte_buffer_t pdu; } rrc_pdu; const static uint32_t LCID_EXIT = 0xffff0000; const static uint32_t LCID_REM_USER = 0xffff0001; const static uint32_t LCID_REL_USER = 0xffff0002; const static uint32_t LCID_RLF_USER = 0xffff0003; const static uint32_t LCID_ACT_USER = 0xffff0004; bool running = false; static const int RRC_THREAD_PRIO = 65; srslte::block_queue rx_pdu_queue; struct sr_sched_t { uint32_t nof_users[100][80]; }; sr_sched_t sr_sched = {}; sr_sched_t cqi_sched = {}; asn1::rrc::mcch_msg_s mcch; bool enable_mbms = false; rrc_cfg_t cfg = {}; uint32_t nof_si_messages = 0; asn1::rrc::sib_type2_s sib2; asn1::rrc::sib_type7_s sib7; class mobility_cfg; std::unique_ptr enb_mobility_cfg; void rem_user_thread(uint16_t rnti); pthread_mutex_t user_mutex; pthread_mutex_t paging_mutex; }; } // namespace srsenb #endif // SRSENB_RRC_H