/** * * \section COPYRIGHT * * Copyright 2013-2021 Software Radio Systems Limited * * By using this file, you agree to the terms and conditions set * forth in the LICENSE file which can be found at the top level of * the distribution. * */ #ifndef SRSUE_TA_CONTROL_H #define SRSUE_TA_CONTROL_H #include #include #include namespace srsue { class ta_control { private: static const size_t MAX_NOF_SPEED_VALUES = 50; ///< Maximum number of data to store for speed calculation static const size_t MIN_NOF_SPEED_VALUES = 1; ///< Minimum number of data for calculating the speed static const size_t MAX_AGE_SPEED_VALUES = 10000; ///< Maximum age of speed data in milliseconds. Discards older data. srslog::basic_logger& logger; mutable std::mutex mutex; uint32_t next_base_nta = 0; float next_base_sec = 0.0f; // Vector containing data for calculating speed. The first value is the time increment from TTI and the second value // is the distance increment from the TA command struct speed_data_t { uint32_t tti; float delta_t; float delta_d; }; std::array speed_data = {}; int32_t last_tti = -1; // Last TTI writen, -1 if none uint32_t write_idx = 0; uint32_t read_idx = 0; void reset_speed_data() { write_idx = 0; read_idx = 0; last_tti = -1; } public: ta_control(srslog::basic_logger& logger) : logger(logger) {} /** * Sets the next base time in seconds, discarding previous changes. * * @param ta_base_sec Time Alignment value in seconds */ void set_base_sec(float ta_base_sec) { std::lock_guard lock(mutex); // Forces next base next_base_sec = ta_base_sec; // Update base in nta next_base_nta = static_cast(roundf(next_base_sec / SRSRAN_LTE_TS)); // Reset speed data reset_speed_data(); logger.info("PHY: Set TA base: n_ta: %d, ta_usec: %.1f", next_base_nta, next_base_sec * 1e6f); } /** * Increments (delta) the next base time. The value in seconds will be added to the next base. * * @param ta_delta_sec Time Alignment increment value in seconds */ void add_delta_sec(float ta_delta_sec) { std::lock_guard lock(mutex); // Increments the next base next_base_sec += ta_delta_sec; // Update base in nta next_base_nta = static_cast(roundf(next_base_sec / SRSRAN_LTE_TS)); logger.info("PHY: Set TA: ta_delta_usec: %.1f, n_ta: %d, ta_usec: %.1f", ta_delta_sec * 1e6f, next_base_nta, next_base_sec * 1e6f); } void add_ta_offset(uint32_t ta_offset) { std::lock_guard lock(mutex); // Assuming numerology 0 next_base_nta = ta_offset / 64; // Update base in seconds next_base_sec = static_cast(next_base_nta) * SRSRAN_LTE_TS; logger.info("PHY: Set TA offset: n_ta_offset: %d, ta_usec: %.1f", next_base_nta, next_base_sec * 1e6f); } /** * Increments (delta) the next base time according to time alignment command from a Random Access Response (RAR). * * @param ta_cmd Time Alignment command */ void add_ta_cmd_rar(uint32_t tti, uint32_t ta_cmd) { std::lock_guard lock(mutex); // Update base nta next_base_nta += srsran_N_ta_new_rar(ta_cmd); // Update base in seconds next_base_sec = static_cast(next_base_nta) * SRSRAN_LTE_TS; // Reset speed data reset_speed_data(); last_tti = tti; logger.info("PHY: Set TA RAR: ta_cmd: %d, n_ta: %d, ta_usec: %.1f", ta_cmd, next_base_nta, next_base_sec * 1e6f); } /** * Increments (delta) the next base time according to time alignment command from a MAC Control Element. * * @param ta_cmd Time Alignment command */ void add_ta_cmd_new(uint32_t tti, uint32_t ta_cmd) { std::lock_guard lock(mutex); float prev_base_sec = next_base_sec; // Update base nta next_base_nta = srsran_N_ta_new(next_base_nta, ta_cmd); // Update base in seconds next_base_sec = static_cast(next_base_nta) * SRSRAN_LTE_TS; logger.info("PHY: Set TA: ta_cmd: %d, n_ta: %d, ta_usec: %.1f", ta_cmd, next_base_nta, next_base_sec * 1e6f); // Calculate speed data if (last_tti > 0) { float delta_t = TTI_SUB(tti, last_tti) * 1e-3f; // Calculate the elapsed time since last time command float delta_d = (next_base_sec - prev_base_sec) * 3e8f / 2.0f; // Calculate distance difference in metres // Write new data speed_data[write_idx].tti = tti; speed_data[write_idx].delta_t = delta_t; speed_data[write_idx].delta_d = delta_d; // Advance write index write_idx = (write_idx + 1) % MAX_NOF_SPEED_VALUES; // Advance read index if overlaps with write if (write_idx == read_idx) { read_idx = (read_idx + 1) % MAX_NOF_SPEED_VALUES; } } last_tti = tti; // Update last TTI } /** * Get the current time alignment in seconds * * @return Time alignment in seconds */ float get_sec() const { std::lock_guard lock(mutex); // Returns the current base return next_base_sec; } /** * Get the current time alignment in microseconds * * @return Time alignment in microseconds */ float get_usec() const { std::lock_guard lock(mutex); // Returns the current base return next_base_sec * 1e6f; } /** * Get the current time alignment in kilometers between the eNb and the UE * * @return Distance based on the current time base */ float get_km() const { std::lock_guard lock(mutex); // Returns the current base, one direction distance return next_base_sec * (3e8f / 2e3f); } /** * Calculates approximated speed in km/h from the TA commands * * @return Distance based on the current time base if enough data has been gathered */ float get_speed_kmph(uint32_t tti) { std::lock_guard lock(mutex); // Advance read pointer for old TTI while (read_idx != write_idx and TTI_SUB(tti, speed_data[read_idx].tti) > MAX_AGE_SPEED_VALUES) { read_idx = (read_idx + 1) % MAX_NOF_SPEED_VALUES; // If there us no data, make last_tti invalid to prevent invalid TTI difference if (read_idx == write_idx) { last_tti = -1; } } // Early return if there is not enough data to calculate speed uint32_t nof_values = ((write_idx + MAX_NOF_SPEED_VALUES) - read_idx) % MAX_NOF_SPEED_VALUES; if (nof_values < MIN_NOF_SPEED_VALUES) { return 0.0f; } // Compute speed from gathered data float sum_t = 0.0f; float sum_d = 0.0f; for (uint32_t i = read_idx; i != write_idx; i = (i + 1) % MAX_NOF_SPEED_VALUES) { sum_t += speed_data[i].delta_t; sum_d += speed_data[i].delta_d; } if (!std::isnormal(sum_t)) { return 0.0f; // Avoid zero division } float speed_mps = sum_d / sum_t; // Speed in m/s // Returns the speed in km/h return speed_mps * 3.6f; } }; } // namespace srsue #endif // SRSUE_TA_CONTROL_H