/** * * \section COPYRIGHT * * Copyright 2013-2014 The libLTE Developers. See the * COPYRIGHT file at the top-level directory of this distribution. * * \section LICENSE * * This file is part of the libLTE library. * * libLTE is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as * published by the Free Software Foundation, either version 3 of * the License, or (at your option) any later version. * * libLTE is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * A copy of the GNU Lesser General Public License can be found in * the LICENSE file in the top-level directory of this distribution * and at http://www.gnu.org/licenses/. * */ #include #include #include #include #include #include #include "liblte/phy/phy.h" lte_cell_t cell = { 6, // nof_prb 1, // nof_ports 0, // cell_id CPNORM, // cyclic prefix R_1_6, // PHICH resources PHICH_NORM // PHICH length }; uint32_t cfi = 2; uint32_t tbs = 0; uint32_t subframe = 1; lte_mod_t modulation = LTE_QPSK; uint32_t rv_idx = 0; uint32_t L_prb = 2; uint32_t n_prb = 0; int freq_hop = -1; int riv = -1; void usage(char *prog) { printf("Usage: %s [csrnfvmtLNF] -l TBS \n", prog); printf("\t-m modulation (1: BPSK, 2: QPSK, 3: QAM16, 4: QAM64) [Default BPSK]\n"); printf("\t-c cell id [Default %d]\n", cell.id); printf("\t-s subframe [Default %d]\n", subframe); printf("\t-L L_prb [Default %d]\n", L_prb); printf("\t-N n_prb [Default %d]\n", n_prb); printf("\t-F frequency hopping [Default %d]\n", freq_hop); printf("\t-R RIV [Default %d]\n", riv); printf("\t-r rv_idx [Default %d]\n", rv_idx); printf("\t-f cfi [Default %d]\n", cfi); printf("\t-n cell.nof_prb [Default %d]\n", cell.nof_prb); printf("\t-v [set verbose to debug, default none]\n"); } void parse_args(int argc, char **argv) { int opt; while ((opt = getopt(argc, argv, "lcnfvmtsrLNFR")) != -1) { switch(opt) { case 'm': switch(atoi(argv[optind])) { case 1: modulation = LTE_BPSK; break; case 2: modulation = LTE_QPSK; break; case 4: modulation = LTE_QAM16; break; case 6: modulation = LTE_QAM64; break; default: fprintf(stderr, "Invalid modulation %d. Possible values: " "(1: BPSK, 2: QPSK, 3: QAM16, 4: QAM64)\n", atoi(argv[optind])); break; } break; case 's': subframe = atoi(argv[optind]); break; case 'L': L_prb = atoi(argv[optind]); break; case 'N': n_prb = atoi(argv[optind]); break; case 'R': riv = atoi(argv[optind]); break; case 'F': freq_hop = atoi(argv[optind]); break; case 'r': rv_idx = atoi(argv[optind]); break; case 'l': tbs = atoi(argv[optind]); break; case 'n': cell.nof_prb = atoi(argv[optind]); break; case 'c': cell.id = atoi(argv[optind]); break; case 'v': verbose++; break; default: usage(argv[0]); exit(-1); } } } int main(int argc, char **argv) { pusch_t pusch; uint8_t *data = NULL; cf_t *sf_symbols = NULL; int ret = -1; struct timeval t[3]; ra_mcs_t mcs; ra_ul_alloc_t prb_alloc; harq_t harq_process; parse_args(argc,argv); mcs.tbs = tbs; mcs.mod = modulation; bzero(&prb_alloc, sizeof(ra_ul_alloc_t)); if (pusch_init(&pusch, cell)) { fprintf(stderr, "Error creating PDSCH object\n"); goto quit; } pusch_set_rnti(&pusch, 1234); if (harq_init(&harq_process, cell)) { fprintf(stderr, "Error initiating HARQ process\n"); goto quit; } printf("Encoding rv_idx=%d\n",rv_idx); uint8_t tmp[20]; for (uint32_t i=0;i<20;i++) { tmp[i] = 1; } uci_data_t uci_data; bzero(&uci_data, sizeof(uci_data_t)); uci_data.beta_cqi = 2.0; uci_data.beta_ri = 2.0; uci_data.beta_ack = 2.0; uci_data.uci_cqi_len = 0; uci_data.uci_ri_len = 0; uci_data.uci_ack_len = 0; uci_data.uci_cqi = tmp; uci_data.uci_ri = 1; uci_data.uci_ack = 1; ra_pusch_t pusch_dci; pusch_dci.freq_hop_fl = freq_hop; if (riv < 0) { pusch_dci.type2_alloc.L_crb = L_prb; pusch_dci.type2_alloc.RB_start = n_prb; } else { ra_type2_from_riv((uint32_t) riv, &pusch_dci.type2_alloc.L_crb, &pusch_dci.type2_alloc.RB_start, cell.nof_prb, cell.nof_prb); } ra_ul_alloc(&prb_alloc, &pusch_dci, 0, cell.nof_prb); if (harq_setup_ul(&harq_process, mcs, 0, subframe, &prb_alloc)) { fprintf(stderr, "Error configuring HARQ process\n"); goto quit; } harq_process.ul_hopping.n_sb = 1; harq_process.ul_hopping.hopping_offset = 0; harq_process.ul_hopping.hop_mode = hop_mode_inter_sf; harq_process.ul_hopping.current_tx_nb = 0; uint32_t nof_re = RE_X_RB*cell.nof_prb*2*CP_NSYMB(cell.cp); sf_symbols = vec_malloc(sizeof(cf_t) * nof_re); if (!sf_symbols) { perror("malloc"); goto quit; } data = malloc(sizeof(uint8_t) * mcs.tbs); if (!data) { perror("malloc"); goto quit; } for (uint32_t i=0;i 0) { if (harq_setup_ul(&harq_process, mcs, rv_idx, subframe, &prb_alloc)) { fprintf(stderr, "Error configuring HARQ process\n"); goto quit; } if (pusch_uci_encode(&pusch, &harq_process, data, uci_data, sf_symbols)) { fprintf(stderr, "Error encoding TB\n"); exit(-1); } } cf_t *scfdma = vec_malloc(sizeof(cf_t) * SF_LEN_PRB(cell.nof_prb)); bzero(scfdma, sizeof(cf_t) * SF_LEN_PRB(cell.nof_prb)); lte_fft_t fft; lte_ifft_init(&fft, CPNORM, cell.nof_prb); lte_fft_set_freq_shift(&fft, 0.5); lte_ifft_run_sf(&fft, sf_symbols, scfdma); gettimeofday(&t[1], NULL); //int r = pusch_decode(&pusch, slot_symbols[0], ce, 0, data, subframe, &harq_process, rv); int r = 0; gettimeofday(&t[2], NULL); get_time_interval(t); if (r) { printf("Error decoding\n"); ret = -1; goto quit; } else { printf("DECODED OK in %d:%d (%.2f Mbps)\n", (int) t[0].tv_sec, (int) t[0].tv_usec, (float) mcs.tbs/t[0].tv_usec); } ret = 0; quit: pusch_free(&pusch); harq_free(&harq_process); if (sf_symbols) { free(sf_symbols); } if (data) { free(data); } if (ret) { printf("Error\n"); } else { printf("Ok\n"); } exit(ret); }