/** * Copyright 2013-2021 Software Radio Systems Limited * * This file is part of srsRAN. * * srsRAN is free software: you can redistribute it and/or modify * it under the terms of the GNU Affero General Public License as * published by the Free Software Foundation, either version 3 of * the License, or (at your option) any later version. * * srsRAN is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Affero General Public License for more details. * * A copy of the GNU Affero General Public License can be found in * the LICENSE file in the top-level directory of this distribution * and at http://www.gnu.org/licenses/. * */ #ifndef SRSRAN_DUMMY_UE_STACK_H #define SRSRAN_DUMMY_UE_STACK_H #include "dummy_rx_harq_proc.h" #include "dummy_tx_harq_proc.h" #include "srsran/asn1/rrc_nr.h" #include "srsran/interfaces/ue_nr_interfaces.h" class ue_dummy_stack : public srsue::stack_interface_phy_nr { public: struct prach_metrics_t { uint32_t count; }; struct cell_search_metrics_t { // Last cell search result for the PCI and SSB candidate srsue::stack_interface_phy_nr::cell_search_result_t last_result; // Signal Measurements float epre_db_avg = 0.0f; float epre_db_min = +INFINITY; float epre_db_max = -INFINITY; float rsrp_db_avg = 0.0f; float rsrp_db_min = +INFINITY; float rsrp_db_max = -INFINITY; float snr_db_avg = 0.0f; float snr_db_min = +INFINITY; float snr_db_max = -INFINITY; float cfo_hz_avg = 0.0f; float cfo_hz_min = +INFINITY; float cfo_hz_max = -INFINITY; uint32_t count = 0; }; struct metrics_t { std::map > cell_search; std::map prach = {}; ///< PRACH metrics indexed with premable index uint32_t sr_count = 0; ///< Counts number of transmitted SR }; private: srslog::basic_logger& logger = srslog::fetch_basic_logger("UE-STCK"); std::mutex rnti_mutex; srsran_random_t random_gen = srsran_random_init(0x1323); srsran_rnti_type_t dl_rnti_type = srsran_rnti_type_c; uint16_t rnti = 0; bool valid = false; uint32_t sr_period = 0; uint32_t sr_count = 0; uint32_t prach_period = 0; uint32_t prach_preamble = 0; bool prach_pending = false; metrics_t metrics = {}; srsue::phy_interface_stack_nr& phy; // Atributes to flag configuration PHy complete bool configuration_complete = false; std::mutex configuration_complete_mutex; std::condition_variable configuration_complete_cvar; // Attributes for throttling PHY and avoiding PHY free-running bool pending_tti = false; std::mutex pending_tti_mutex; std::condition_variable pending_tti_cvar; std::atomic running = {true}; dummy_tx_harq_entity tx_harq_proc; dummy_rx_harq_entity rx_harq_proc; std::atomic cell_search_finished = {false}; std::atomic cell_select_finished = {false}; cell_select_result_t cell_select_result = {}; public: struct args_t { uint16_t rnti = 0x1234; ///< C-RNTI for PUSCH and PDSCH transmissions uint32_t sr_period = 0; ///< Indicates positive SR period in number of opportunities. Set to 0 to disable. uint32_t prach_period = 0; ///< Requests PHY to transmit PRACH periodically in frames. Set to 0 to disable. std::string log_level = "warning"; }; ue_dummy_stack(const args_t& args, srsue::phy_interface_stack_nr& phy_) : rnti(args.rnti), sr_period(args.sr_period), prach_period(args.prach_period), phy(phy_) { logger.set_level(srslog::str_to_basic_level(args.log_level)); valid = true; } ~ue_dummy_stack() { srsran_random_free(random_gen); } void in_sync() override {} void out_of_sync() override {} void run_tti(const uint32_t tti, const uint32_t tti_jump) override { // Wait for tick from test bench std::unique_lock lock(pending_tti_mutex); while (not pending_tti and running) { pending_tti_cvar.wait_for(lock, std::chrono::milliseconds(1)); } // Let the tick proceed pending_tti = false; pending_tti_cvar.notify_all(); // Run PRACH if (prach_period != 0) { uint32_t slot_idx = tti % SRSRAN_NSLOTS_PER_FRAME_NR(srsran_subcarrier_spacing_15kHz); uint32_t sfn = tti / SRSRAN_NSLOTS_PER_FRAME_NR(srsran_subcarrier_spacing_15kHz); if (not prach_pending and slot_idx == 0 and sfn % prach_period == 0) { prach_preamble = srsran_random_uniform_int_dist(random_gen, 0, 63); phy.send_prach(0, prach_preamble, 0.0f, 0.0f); prach_pending = true; } } } void tick() { // Wait for TTI to get processed std::unique_lock lock(pending_tti_mutex); while (pending_tti and running) { pending_tti_cvar.wait_for(lock, std::chrono::milliseconds(1)); } // Let the TTI proceed pending_tti = true; pending_tti_cvar.notify_all(); } void stop() { running = false; pending_tti_cvar.notify_all(); } sched_rnti_t get_dl_sched_rnti_nr(const uint32_t tti) override { std::unique_lock lock(rnti_mutex); return {rnti, dl_rnti_type}; } sched_rnti_t get_ul_sched_rnti_nr(const uint32_t tti) override { std::unique_lock lock(rnti_mutex); return {rnti, srsran_rnti_type_c}; } void new_grant_dl(const uint32_t cc_idx, const mac_nr_grant_dl_t& grant, tb_action_dl_t* action) override { action->tb.enabled = true; action->tb.softbuffer = &rx_harq_proc[grant.pid].get_softbuffer(grant.ndi, grant.tbs); } void tb_decoded(const uint32_t cc_idx, const mac_nr_grant_dl_t& grant, tb_action_dl_result_t result) override {} void new_grant_ul(const uint32_t cc_idx, const mac_nr_grant_ul_t& grant, tb_action_ul_t* action) override { if (action == nullptr) { return; } action->tb.enabled = true; action->tb.payload = tx_harq_proc[grant.pid].get_tb(grant.tbs); action->tb.softbuffer = &tx_harq_proc[grant.pid].get_softbuffer(grant.ndi); } void prach_sent(uint32_t tti, uint32_t s_id, uint32_t t_id, uint32_t f_id, uint32_t ul_carrier_id) override { std::unique_lock lock(rnti_mutex); dl_rnti_type = srsran_rnti_type_ra; rnti = 1 + s_id + 14 * t_id + 14 * 80 * f_id + 14 * 80 * 8 * ul_carrier_id; metrics.prach[prach_preamble].count++; prach_pending = false; } bool sr_opportunity(uint32_t tti, uint32_t sr_id, bool meas_gap, bool ul_sch_tx) override { if (sr_period == 0) { return false; } if (sr_count >= (sr_period - 1) and not ul_sch_tx) { metrics.sr_count++; sr_count = 0; return true; } sr_count++; return false; } bool is_valid() const { return valid; } const metrics_t& get_metrics() const { return metrics; } void reset_metrics() { metrics.cell_search.clear(); metrics.prach.clear(); metrics.sr_count = 0; } void set_phy_config_complete(bool status) override { std::unique_lock lock(configuration_complete_mutex); configuration_complete = true; configuration_complete_cvar.notify_all(); } void wait_phy_config_complete() { std::unique_lock lock(configuration_complete_mutex); while (not configuration_complete) { configuration_complete_cvar.wait(lock); } configuration_complete = false; } bool get_cell_search_finished() { bool ret = cell_search_finished; cell_search_finished = false; return ret; } void cell_search_found_cell(const cell_search_result_t& result) override { if (not result.cell_found) { logger.info("Cell search finished without detecting any cell"); // Flag as cell search is done cell_search_finished = true; return; } // Pack PBCH message bits std::array bit_pack_pbch_msg = {}; asn1::cbit_ref cbit(bit_pack_pbch_msg.data(), bit_pack_pbch_msg.size()); srsran_bit_pack_vector((uint8_t*)result.pbch_msg.payload, bit_pack_pbch_msg.data(), SRSRAN_PBCH_MSG_NR_SZ); // Unpack MIB with ASN1 asn1::rrc_nr::bcch_bch_msg_s bcch; bcch.unpack(cbit); // Convert MIB to JSON asn1::json_writer json; bcch.to_json(json); // Unpack MIB with C lib srsran_mib_nr_t mib_c = {}; srsran_pbch_msg_nr_mib_unpack(&result.pbch_msg, &mib_c); // Convert MIB from C lib to info std::array mib_info = {}; srsran_pbch_msg_nr_mib_info(&mib_c, mib_info.data(), (uint32_t)mib_info.size()); // Convert CSI to string std::array csi_info = {}; srsran_csi_meas_info_short(&result.measurements, csi_info.data(), (uint32_t)csi_info.size()); logger.info( "Cell found pci=%d %s %s ASN1: %s", result.pci, mib_info.data(), csi_info.data(), json.to_string().c_str()); cell_search_metrics_t& m = metrics.cell_search[result.pci][result.pbch_msg.ssb_idx]; m.last_result = result; m.epre_db_min = SRSRAN_MIN(m.epre_db_min, result.measurements.epre_dB); m.epre_db_max = SRSRAN_MAX(m.epre_db_max, result.measurements.epre_dB); m.epre_db_avg = SRSRAN_VEC_SAFE_CMA(result.measurements.epre_dB, m.epre_db_avg, m.count); m.rsrp_db_min = SRSRAN_MIN(m.rsrp_db_min, result.measurements.rsrp_dB); m.rsrp_db_max = SRSRAN_MAX(m.rsrp_db_max, result.measurements.rsrp_dB); m.rsrp_db_avg = SRSRAN_VEC_SAFE_CMA(result.measurements.rsrp_dB, m.rsrp_db_avg, m.count); m.snr_db_min = SRSRAN_MIN(m.snr_db_min, result.measurements.snr_dB); m.snr_db_max = SRSRAN_MAX(m.snr_db_max, result.measurements.snr_dB); m.snr_db_avg = SRSRAN_VEC_SAFE_CMA(result.measurements.snr_dB, m.snr_db_avg, m.count); m.cfo_hz_min = SRSRAN_MIN(m.cfo_hz_min, result.measurements.cfo_hz); m.cfo_hz_max = SRSRAN_MAX(m.cfo_hz_max, result.measurements.cfo_hz); m.cfo_hz_avg = SRSRAN_VEC_SAFE_CMA(result.measurements.cfo_hz, m.cfo_hz_avg, m.count); m.count++; // Flag as cell search is done cell_search_finished = true; } bool get_cell_select_finished() { bool ret = cell_select_finished; cell_select_finished = false; return ret; } cell_select_result_t get_cell_select_result() { return cell_select_result; } void cell_select_completed(const cell_select_result_t& result) override { cell_select_result = result; cell_select_finished = true; } }; #endif // SRSRAN_DUMMY_UE_STACK_H