/** * Copyright 2013-2021 Software Radio Systems Limited * * This file is part of srsRAN. * * srsRAN is free software: you can redistribute it and/or modify * it under the terms of the GNU Affero General Public License as * published by the Free Software Foundation, either version 3 of * the License, or (at your option) any later version. * * srsRAN is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Affero General Public License for more details. * * A copy of the GNU Affero General Public License can be found in * the LICENSE file in the top-level directory of this distribution * and at http://www.gnu.org/licenses/. * */ /****************************************************************************** * File: vector.h * * Description: Vector functions using SIMD instructions where possible. * * Reference: *****************************************************************************/ #ifndef SRSRAN_VECTOR_H #define SRSRAN_VECTOR_H #ifdef __cplusplus extern "C" { #endif #include "srsran/config.h" #include #include #include #include #define SRSRAN_MEM_ALLOC(T, N) ((T*)srsran_vec_malloc((uint32_t)sizeof(T) * (N))) #define SRSRAN_MEM_ZERO(Q, T, N) \ do { \ T* ptr_ = (Q); \ srsran_vec_zero((void*)ptr_, (uint32_t)sizeof(T) * (N)); \ } while (false) #define SRSRAN_MAX(a, b) ((a) > (b) ? (a) : (b)) #define SRSRAN_MIN(a, b) ((a) < (b) ? (a) : (b)) #define SRSRAN_CEIL(NUM, DEN) (((NUM) + ((DEN)-1)) / (DEN)) #define SRSRAN_FLOOR(NUM, DEN) ((NUM) / (DEN)) #define SRSRAN_ROUND(NUM, DEN) ((uint32_t)round((double)(NUM) / (double)(DEN))) #define SRSRAN_CEIL_LOG2(N) (((N) == 0) ? 0 : ceil(log2((double)(N)))) // Complex squared absolute value #define SRSRAN_CSQABS(X) (__real__(X) * __real__(X) + __imag__(X) * __imag__(X)) // Cumulative moving average #define SRSRAN_VEC_CMA(data, average, n) ((average) + ((data) - (average)) / ((n) + 1)) // Cumulative moving average #ifdef __cplusplus #define SRSRAN_VEC_SAFE_CMA(data, average, n) (std::isnormal(average) ? SRSRAN_VEC_CMA(data, average, n) : (data)) #else #define SRSRAN_VEC_SAFE_CMA(data, average, n) (isnormal(average) ? SRSRAN_VEC_CMA(data, average, n) : (data)) #endif // Proportional moving average #define SRSRAN_VEC_PMA(average1, n1, average2, n2) (((average1) * (n1) + (average2) * (n2)) / ((n1) + (n2))) // Safe Proportional moving average #ifdef __cplusplus #define SRSRAN_VEC_SAFE_PMA(average1, n1, average2, n2) \ (std::isnormal((n1) + (n2)) ? SRSRAN_VEC_PMA(average1, n1, average2, n2) : (0)) #else #define SRSRAN_VEC_SAFE_PMA(average1, n1, average2, n2) \ (isnormal((n1) + (n2)) ? SRSRAN_VEC_PMA(average1, n1, average2, n2) : (0)) #endif // Exponential moving average #define SRSRAN_VEC_EMA(data, average, alpha) ((alpha) * (data) + (1 - alpha) * (average)) // Safe exponential moving average #ifdef __cplusplus #define SRSRAN_VEC_SAFE_EMA(data, average, alpha) \ (std::isnormal(average) ? SRSRAN_VEC_EMA(data, average, alpha) : (data)) #else #define SRSRAN_VEC_SAFE_EMA(data, average, alpha) (isnormal(average) ? SRSRAN_VEC_EMA(data, average, alpha) : (data)) #endif static inline float srsran_convert_amplitude_to_dB(float v) { return 20.0f * log10f(v); } static inline float srsran_convert_power_to_dB(float v) { return 10.0f * log10f(v); } static inline float srsran_convert_power_to_dBm(float v) { return srsran_convert_power_to_dB(v) + 30.0f; } static inline float srsran_convert_dB_to_amplitude(float v) { return powf(10.0f, v / 20.0f); } static inline float srsran_convert_dB_to_power(float v) { return powf(10.0f, v / 10.0f); } /*! * Computes \f$ z = x \oplus y \f$ elementwise. * \param[in] x A pointer to a vector of uint8_t with 0's and 1's. * \param[in] y A pointer to a vector of uint8_t with 0's and 1's. * \param[out] z A pointer to a vector of uint8_t with 0's and 1's. * \param[in] len Length of vectors x, y and z. */ SRSRAN_API void srsran_vec_xor_bbb(const uint8_t* x, const uint8_t* y, uint8_t* z, const uint32_t len); /** Return the sum of all the elements */ SRSRAN_API float srsran_vec_acc_ff(const float* x, const uint32_t len); SRSRAN_API cf_t srsran_vec_acc_cc(const cf_t* x, const uint32_t len); SRSRAN_API void* srsran_vec_malloc(uint32_t size); SRSRAN_API cf_t* srsran_vec_cf_malloc(uint32_t size); SRSRAN_API float* srsran_vec_f_malloc(uint32_t size); SRSRAN_API int32_t* srsran_vec_i32_malloc(uint32_t nsamples); SRSRAN_API uint32_t* srsran_vec_u32_malloc(uint32_t nsamples); SRSRAN_API int16_t* srsran_vec_i16_malloc(uint32_t nsamples); SRSRAN_API uint16_t* srsran_vec_u16_malloc(uint32_t nsamples); SRSRAN_API int8_t* srsran_vec_i8_malloc(uint32_t nsamples); SRSRAN_API uint8_t* srsran_vec_u8_malloc(uint32_t nsamples); SRSRAN_API void* srsran_vec_realloc(void* ptr, uint32_t old_size, uint32_t new_size); /* Zero memory */ SRSRAN_API void srsran_vec_zero(void* ptr, uint32_t nsamples); SRSRAN_API void srsran_vec_cf_zero(cf_t* ptr, uint32_t nsamples); SRSRAN_API void srsran_vec_f_zero(float* ptr, uint32_t nsamples); SRSRAN_API void srsran_vec_i8_zero(int8_t* ptr, uint32_t nsamples); SRSRAN_API void srsran_vec_u8_zero(uint8_t* ptr, uint32_t nsamples); SRSRAN_API void srsran_vec_i16_zero(int16_t* ptr, uint32_t nsamples); SRSRAN_API void srsran_vec_u32_zero(uint32_t* ptr, uint32_t nsamples); /* Copy memory */ SRSRAN_API void srsran_vec_cf_copy(cf_t* dst, const cf_t* src, uint32_t len); SRSRAN_API void srsran_vec_f_copy(float* dst, const float* src, uint32_t len); SRSRAN_API void srsran_vec_u8_copy(uint8_t* dst, const uint8_t* src, uint32_t len); SRSRAN_API void srsran_vec_i8_copy(int8_t* dst, const int8_t* src, uint32_t len); SRSRAN_API void srsran_vec_u16_copy(uint16_t* dst, const uint16_t* src, uint32_t len); SRSRAN_API void srsran_vec_i16_copy(int16_t* dst, const int16_t* src, uint32_t len); /* print vectors */ SRSRAN_API void srsran_vec_fprint_c(FILE* stream, const cf_t* x, const uint32_t len); SRSRAN_API void srsran_vec_fprint_f(FILE* stream, const float* x, const uint32_t len); SRSRAN_API void srsran_vec_fprint_b(FILE* stream, const uint8_t* x, const uint32_t len); SRSRAN_API void srsran_vec_fprint_bs(FILE* stream, const int8_t* x, const uint32_t len); SRSRAN_API void srsran_vec_fprint_byte(FILE* stream, const uint8_t* x, const uint32_t len); SRSRAN_API void srsran_vec_fprint_i(FILE* stream, const int* x, const uint32_t len); SRSRAN_API void srsran_vec_fprint_s(FILE* stream, const int16_t* x, const uint32_t len); SRSRAN_API void srsran_vec_fprint_hex(FILE* stream, uint8_t* x, const uint32_t len); SRSRAN_API uint32_t srsran_vec_sprint_hex(char* str, const uint32_t max_str_len, uint8_t* x, const uint32_t len); SRSRAN_API void srsran_vec_sprint_bin(char* str, const uint32_t max_str_len, const uint8_t* x, const uint32_t len); /* Saves/loads a vector to a file */ SRSRAN_API void srsran_vec_save_file(char* filename, const void* buffer, const uint32_t len); SRSRAN_API void srsran_vec_load_file(char* filename, void* buffer, const uint32_t len); /* sum two vectors */ SRSRAN_API void srsran_vec_sum_fff(const float* x, const float* y, float* z, const uint32_t len); SRSRAN_API void srsran_vec_sum_ccc(const cf_t* x, const cf_t* y, cf_t* z, const uint32_t len); SRSRAN_API void srsran_vec_sum_sss(const int16_t* x, const int16_t* y, int16_t* z, const uint32_t len); /* substract two vectors z=x-y */ SRSRAN_API void srsran_vec_sub_fff(const float* x, const float* y, float* z, const uint32_t len); SRSRAN_API void srsran_vec_sub_ccc(const cf_t* x, const cf_t* y, cf_t* z, const uint32_t len); SRSRAN_API void srsran_vec_sub_sss(const int16_t* x, const int16_t* y, int16_t* z, const uint32_t len); SRSRAN_API void srsran_vec_sub_bbb(const int8_t* x, const int8_t* y, int8_t* z, const uint32_t len); /* sum a scalar to all elements of a vector */ SRSRAN_API void srsran_vec_sc_sum_fff(const float* x, float h, float* z, uint32_t len); /* scalar product */ SRSRAN_API void srsran_vec_sc_prod_cfc(const cf_t* x, const float h, cf_t* z, const uint32_t len); SRSRAN_API void srsran_vec_sc_prod_fcc(const float* x, const cf_t h, cf_t* z, const uint32_t len); SRSRAN_API void srsran_vec_sc_prod_ccc(const cf_t* x, const cf_t h, cf_t* z, const uint32_t len); SRSRAN_API void srsran_vec_sc_prod_fff(const float* x, const float h, float* z, const uint32_t len); SRSRAN_API void srsran_vec_convert_fi(const float* x, const float scale, int16_t* z, const uint32_t len); SRSRAN_API void srsran_vec_convert_conj_cs(const cf_t* x, const float scale, int16_t* z, const uint32_t len); SRSRAN_API void srsran_vec_convert_if(const int16_t* x, const float scale, float* z, const uint32_t len); SRSRAN_API void srsran_vec_convert_fb(const float* x, const float scale, int8_t* z, const uint32_t len); SRSRAN_API void srsran_vec_lut_sss(const short* x, const unsigned short* lut, short* y, const uint32_t len); SRSRAN_API void srsran_vec_lut_bbb(const int8_t* x, const unsigned short* lut, int8_t* y, const uint32_t len); SRSRAN_API void srsran_vec_lut_sis(const short* x, const unsigned int* lut, short* y, const uint32_t len); /* vector product (element-wise) */ SRSRAN_API void srsran_vec_prod_ccc(const cf_t* x, const cf_t* y, cf_t* z, const uint32_t len); SRSRAN_API void srsran_vec_prod_ccc_split(const float* x_re, const float* x_im, const float* y_re, const float* y_im, float* z_re, float* z_im, const uint32_t len); /* vector product (element-wise) */ SRSRAN_API void srsran_vec_prod_cfc(const cf_t* x, const float* y, cf_t* z, const uint32_t len); /* conjugate vector product (element-wise) */ SRSRAN_API void srsran_vec_prod_conj_ccc(const cf_t* x, const cf_t* y, cf_t* z, const uint32_t len); /* real vector product (element-wise) */ SRSRAN_API void srsran_vec_prod_fff(const float* x, const float* y, float* z, const uint32_t len); SRSRAN_API void srsran_vec_prod_sss(const int16_t* x, const int16_t* y, int16_t* z, const uint32_t len); // Negate sign (scrambling) SRSRAN_API void srsran_vec_neg_sss(const int16_t* x, const int16_t* y, int16_t* z, const uint32_t len); SRSRAN_API void srsran_vec_neg_bbb(const int8_t* x, const int8_t* y, int8_t* z, const uint32_t len); SRSRAN_API void srsran_vec_neg_bb(const int8_t* x, int8_t* z, const uint32_t len); /* Dot-product */ SRSRAN_API cf_t srsran_vec_dot_prod_cfc(const cf_t* x, const float* y, const uint32_t len); SRSRAN_API cf_t srsran_vec_dot_prod_ccc(const cf_t* x, const cf_t* y, const uint32_t len); SRSRAN_API cf_t srsran_vec_dot_prod_conj_ccc(const cf_t* x, const cf_t* y, const uint32_t len); SRSRAN_API float srsran_vec_dot_prod_fff(const float* x, const float* y, const uint32_t len); SRSRAN_API int32_t srsran_vec_dot_prod_sss(const int16_t* x, const int16_t* y, const uint32_t len); /* z=x/y vector division (element-wise) */ SRSRAN_API void srsran_vec_div_ccc(const cf_t* x, const cf_t* y, cf_t* z, const uint32_t len); SRSRAN_API void srsran_vec_div_cfc(const cf_t* x, const float* y, cf_t* z, const uint32_t len); SRSRAN_API void srsran_vec_div_fff(const float* x, const float* y, float* z, const uint32_t len); /* conjugate */ SRSRAN_API void srsran_vec_conj_cc(const cf_t* x, cf_t* y, const uint32_t len); /* average vector power */ SRSRAN_API float srsran_vec_avg_power_cf(const cf_t* x, const uint32_t len); SRSRAN_API float srsran_vec_avg_power_sf(const int16_t* x, const uint32_t len); SRSRAN_API float srsran_vec_avg_power_bf(const int8_t* x, const uint32_t len); SRSRAN_API float srsran_vec_avg_power_ff(const float* x, const uint32_t len); /* Correlation between complex vectors x and y */ SRSRAN_API float srsran_vec_corr_ccc(const cf_t* x, cf_t* y, const uint32_t len); /* return the index of the maximum value in the vector */ SRSRAN_API uint32_t srsran_vec_max_fi(const float* x, const uint32_t len); SRSRAN_API uint32_t srsran_vec_max_abs_fi(const float* x, const uint32_t len); SRSRAN_API uint32_t srsran_vec_max_abs_ci(const cf_t* x, const uint32_t len); /*! * Quantizes an array of floats into an array of 16-bit signed integers. It is * ensured that *-inf* and *inf* map to -32767 and 32767, respectively (useful * when quantizing on less than 16 bits). * \param[in] in Real values to be quantized. * \param[out] out Quantized values. * \param[in] gain Quantization gain, controls the output range. * \param[in] offset Quantization offset, for asymmetric quantization. * \param[in] clip Saturation value. * \param[in] len Number of values to be quantized. */ SRSRAN_API void srsran_vec_quant_fs(const float* in, int16_t* out, float gain, float offset, float clip, uint32_t len); /*! * Quantizes an array of floats into an array of 8-bit signed integers. It is * ensured that *-inf* and *inf* map to -127 and 127, respectively (useful * when quantizing on less than 8 bits). * \param[in] in Real values to be quantized. * \param[out] out Quantized values. * \param[in] gain Quantization gain, controls the output range. * \param[in] offset Quantization offset, for asymmetric quantization. * \param[in] clip Saturation value. * \param[in] len Number of values to be quantized. */ SRSRAN_API void srsran_vec_quant_fc(const float* in, int8_t* out, float gain, float offset, float clip, uint32_t len); /* quantify vector of floats or int16 and convert to uint8_t */ SRSRAN_API void srsran_vec_quant_fuc(const float* in, uint8_t* out, const float gain, const float offset, const uint8_t clip, const uint32_t len); SRSRAN_API void srsran_vec_quant_fus(const float* in, uint16_t* out, const float gain, const float offset, const uint16_t clip, const uint32_t len); SRSRAN_API void srsran_vec_quant_suc(const int16_t* in, uint8_t* out, const float gain, const float offset, const uint8_t clip, const uint32_t len); SRSRAN_API void srsran_vec_quant_sus(const int16_t* in, uint16_t* out, const float gain, const float offset, const uint16_t clip, const uint32_t len); /* magnitude of each vector element */ SRSRAN_API void srsran_vec_abs_cf(const cf_t* x, float* abs, const uint32_t len); SRSRAN_API void srsran_vec_abs_square_cf(const cf_t* x, float* abs_square, const uint32_t len); /** * @brief Extracts module in decibels of a complex vector * * This function extracts the module in decibels of a complex array input. Abnormal absolute value inputs (zero, * infinity and not-a-number) are set to default_value outputs. * * Equivalent code: * for (int i = 0; i < len; i++) { * float mag = x[i]; * * // Check boundaries * if (isnormal(mag)) { * // Avoid infinites and zeros * abs[i] = 20.0f * log10f(mag); * } else { * // Set to default value instead * abs[i] = default_value; * } * } * * @param x is the input complex vector * @param default_value is the value to use in case of having an abnormal absolute value. * @param abs is the destination vector * @param len is the input and output number of samples * */ SRSRAN_API void srsran_vec_abs_dB_cf(const cf_t* x, float default_value, float* abs, const uint32_t len); /** * @brief Extracts argument in degrees from a complex vector * * This function extracts the argument from a complex vector. Infinity and not-a-number results are set to * default_value. * * Equivalent code: * for(int i = 0; i < len; i++) { * arg[i] = cargf(x[i]) * (180.0f / M_PI); * * if (arg[i]!=0.0f && !isnormal(arg[i])) { * arg[i] = default_value; * } * } * * @param x is the input complex vector * @param default_value is the value to use in case of having an abnormal result. * @param arg is the destination vector * @param len is the input and output number of samples * */ SRSRAN_API void srsran_vec_arg_deg_cf(const cf_t* x, float default_value, float* arg, const uint32_t len); SRSRAN_API float srsran_mean_arg_cf(const cf_t* x, uint32_t len); SRSRAN_API void srsran_vec_interleave(const cf_t* x, const cf_t* y, cf_t* z, const int len); SRSRAN_API void srsran_vec_interleave_add(const cf_t* x, const cf_t* y, cf_t* z, const int len); SRSRAN_API cf_t srsran_vec_gen_sine(cf_t amplitude, float freq, cf_t* z, int len); SRSRAN_API void srsran_vec_apply_cfo(const cf_t* x, float cfo, cf_t* z, int len); SRSRAN_API float srsran_vec_estimate_frequency(const cf_t* x, int len); /*! * @brief Generates an amplitude envelope that, multiplied point-wise with a vector, results in clipping * by a specified amplitude threshold. * @param[in] x_abs Absolute value vector of the signal to be clipped * @param[in] thres Clipping threshold * @param[out] clip_env The generated clipping envelope * @param[in] len Length of the vector. */ SRSRAN_API void srsran_vec_gen_clip_env(const float* x_abs, const float thres, const float alpha, float* env, const int len); /*! * @brief Calculates the PAPR of a complex vector * @param[in] in Input vector * @param[in] len Vector length. */ SRSRAN_API float srsran_vec_papr_c(const cf_t* in, const int len); /*! * @brief Calculates the ACPR of a signal using its baseband spectrum * @attention The spectrum passed by x_f needs to be in FFT form * @param[in] x_f Spectrum of the signal * @param[in] win_pos_len Channel frequency window for the positive side of the spectrum * @param[in] win_neg_len Channel frequency window for the negative side of the spectrum * @param[in] len Length of the x_f vector * @returns The ACPR in linear form */ SRSRAN_API float srsran_vec_acpr_c(const cf_t* x_f, const uint32_t win_pos_len, const uint32_t win_neg_len, const uint32_t len); #ifdef __cplusplus } #endif #endif // SRSRAN_VECTOR_H