/** * * \section COPYRIGHT * * Copyright 2013-2015 Software Radio Systems Limited * * \section LICENSE * * This file is part of the srsUE library. * * srsUE is free software: you can redistribute it and/or modify * it under the terms of the GNU Affero General Public License as * published by the Free Software Foundation, either version 3 of * the License, or (at your option) any later version. * * srsUE is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Affero General Public License for more details. * * A copy of the GNU Affero General Public License can be found in * the LICENSE file in the top-level directory of this distribution * and at http://www.gnu.org/licenses/. * */ #include #include #include "srslte/asn1/rrc_asn1.h" #include "srslte/common/log_filter.h" #include "srslte/common/mac_pcap.h" #include "srslte/interfaces/ue_interfaces.h" #include "srslte/radio/radio_multi.h" #include "srsue/hdr/mac/mac.h" #include "srsue/hdr/phy/phy.h" using namespace asn1::rrc; /********************************************************************** * Program arguments processing ***********************************************************************/ typedef struct { float rf_rx_freq; float rf_tx_freq; float rf_rx_gain; float rf_tx_gain; int verbose; bool do_trace; bool do_pcap; }prog_args_t; void args_default(prog_args_t *args) { args->rf_rx_freq = -1.0; args->rf_tx_freq = -1.0; args->rf_rx_gain = -1; // set to autogain args->rf_tx_gain = -1; args->verbose = 0; args->do_trace = false; args->do_pcap = false; } void usage(prog_args_t *args, char *prog) { printf("Usage: %s [gGtpv] -f rx_frequency (in Hz) -F tx_frequency (in Hz)\n", prog); printf("\t-g RF RX gain [Default AGC]\n"); printf("\t-G RF TX gain [Default same as RX gain (AGC)]\n"); printf("\t-t Enable trace [Default disabled]\n"); printf("\t-p Enable PCAP capture [Default disabled]\n"); printf("\t-v [increase verbosity, default none]\n"); } void parse_args(prog_args_t *args, int argc, char **argv) { int opt; args_default(args); while ((opt = getopt(argc, argv, "gGftpFv")) != -1) { switch (opt) { case 'g': args->rf_rx_gain = atof(argv[optind]); break; case 'G': args->rf_tx_gain = atof(argv[optind]); break; case 'f': args->rf_rx_freq = atof(argv[optind]); break; case 'F': args->rf_tx_freq = atof(argv[optind]); break; case 't': args->do_trace = true; break; case 'p': args->do_pcap = true; break; case 'v': args->verbose++; break; default: usage(args, argv[0]); exit(-1); } } if (args->rf_rx_freq < 0 || args->rf_tx_freq < 0) { usage(args, argv[0]); exit(-1); } } // Determine SI messages scheduling as in 36.331 5.2.3 Acquisition of an SI message uint32_t sib_start_tti(uint32_t tti, uint32_t period, uint32_t x) { return (period*10*(1+tti/(period*10))+x)%10240; // the 1 means next opportunity } void setup_mac_phy_sib2(sib_type2_s* sib2, srsue::mac* mac, srsue::phy* phy) { // Apply RACH configuration srsue::mac_interface_rrc::mac_cfg_t mac_cfg; mac->get_config(&mac_cfg); mac_cfg.rach = sib2->rr_cfg_common.rach_cfg_common; mac->set_config(&mac_cfg); printf("Set RACH ConfigCommon: NofPreambles=%d, ResponseWindow=%d, ContentionResolutionTimer=%d ms, MaxTrials=%d\n", sib2->rr_cfg_common.rach_cfg_common.preamb_info.nof_ra_preambs.to_number(), sib2->rr_cfg_common.rach_cfg_common.ra_supervision_info.ra_resp_win_size.to_number(), sib2->rr_cfg_common.rach_cfg_common.ra_supervision_info.mac_contention_resolution_timer.to_number(), sib2->rr_cfg_common.rach_cfg_common.ra_supervision_info.preamb_trans_max.to_number()); // Apply PHY RR Config Common srsue::phy_interface_rrc::phy_cfg_common_t common; common.pdsch_cnfg = sib2->rr_cfg_common.pdsch_cfg_common; common.pusch_cnfg = sib2->rr_cfg_common.pusch_cfg_common; common.pucch_cnfg = sib2->rr_cfg_common.pucch_cfg_common; common.ul_pwr_ctrl = sib2->rr_cfg_common.ul_pwr_ctrl_common; common.prach_cnfg = sib2->rr_cfg_common.prach_cfg; common.srs_ul_cnfg = sib2->rr_cfg_common.srs_ul_cfg_common; phy->set_config_common(&common); phy->configure_ul_params(); printf("Set PUSCH ConfigCommon: HopOffset=%d, RSGroup=%d, RSNcs=%d, N_sb=%d\n", sib2->rr_cfg_common.pusch_cfg_common.pusch_cfg_basic.pusch_hop_offset, sib2->rr_cfg_common.pusch_cfg_common.ul_ref_sigs_pusch.group_assign_pusch, sib2->rr_cfg_common.pusch_cfg_common.ul_ref_sigs_pusch.cyclic_shift, sib2->rr_cfg_common.pusch_cfg_common.pusch_cfg_basic.n_sb); printf("Set PUCCH ConfigCommon: DeltaShift=%d, CyclicShift=%d, N1=%d, NRB=%d\n", sib2->rr_cfg_common.pucch_cfg_common.delta_pucch_shift.to_number(), sib2->rr_cfg_common.pucch_cfg_common.n_cs_an, sib2->rr_cfg_common.pucch_cfg_common.n1_pucch_an, sib2->rr_cfg_common.pucch_cfg_common.n_rb_cqi); printf("Set PRACH ConfigCommon: SeqIdx=%d, HS=%d, FreqOffset=%d, ZC=%d, ConfigIndex=%d\n", sib2->rr_cfg_common.prach_cfg.root_seq_idx, sib2->rr_cfg_common.prach_cfg.prach_cfg_info.high_speed_flag ? 1 : 0, sib2->rr_cfg_common.prach_cfg.prach_cfg_info.prach_freq_offset, sib2->rr_cfg_common.prach_cfg.prach_cfg_info.zero_correlation_zone_cfg, sib2->rr_cfg_common.prach_cfg.prach_cfg_info.prach_cfg_idx); if (sib2->rr_cfg_common.srs_ul_cfg_common.type() == srs_ul_cfg_common_c::types::setup) { srs_ul_cfg_common_c::setup_s_* setup = &sib2->rr_cfg_common.srs_ul_cfg_common.setup(); printf("Set SRS ConfigCommon: BW-Configuration=%d, SF-Configuration=%d, ACKNACK=%d\n", setup->srs_bw_cfg.to_number(), setup->srs_sf_cfg.to_number(), setup->ack_nack_srs_simul_tx ? 1 : 0); } } void process_connsetup(rrc_conn_setup_s* msg, srsue::mac* mac, srsue::phy* phy) { // FIXME: There's an error parsing the connectionSetup message. This value is hard-coded: rr_cfg_ded_s* rr_ded = &msg->crit_exts.c1().rrc_conn_setup_r8().rr_cfg_ded; if (rr_ded->phys_cfg_ded_present) { phy->set_config_dedicated(&rr_ded->phys_cfg_ded); printf("Set PHY configuration: SR-n_pucch=%d, SR-ConfigIndex=%d, SRS-ConfigIndex=%d, SRS-bw=%d, SRS-Nrcc=%d, " "SRS-hop=%d, SRS-Ncs=%d\n", rr_ded->phys_cfg_ded.sched_request_cfg.setup().sr_pucch_res_idx, rr_ded->phys_cfg_ded.sched_request_cfg.setup().sr_cfg_idx, rr_ded->phys_cfg_ded.srs_ul_cfg_ded.setup().srs_cfg_idx, rr_ded->phys_cfg_ded.srs_ul_cfg_ded.setup().srs_bw.to_number(), rr_ded->phys_cfg_ded.srs_ul_cfg_ded.setup().freq_domain_position, rr_ded->phys_cfg_ded.srs_ul_cfg_ded.setup().srs_hop_bw.to_number(), rr_ded->phys_cfg_ded.srs_ul_cfg_ded.setup().cyclic_shift.to_number()); } srsue::mac_interface_rrc::mac_cfg_t mac_set; mac->get_config(&mac_set); mac_set.main = rr_ded->mac_main_cfg.explicit_value(); // SR is a PHY config but is needed by SR procedure in 36.321 5.4.4 mac_set.sr = rr_ded->phys_cfg_ded.sched_request_cfg; mac->set_config(&mac_set); printf("Set MAC configuration: dsr-TransMAX: %d, harq-MaxReTX=%d, bsr-TimerReTX=%d, bsr-TimerPeriodic=%d\n", rr_ded->phys_cfg_ded.sched_request_cfg.setup().dsr_trans_max.to_number(), rr_ded->mac_main_cfg.explicit_value().ul_sch_cfg.max_harq_tx.to_number(), rr_ded->mac_main_cfg.explicit_value().ul_sch_cfg.retx_bsr_timer.to_number(), rr_ded->mac_main_cfg.explicit_value().ul_sch_cfg.periodic_bsr_timer.to_number()); phy->configure_ul_params(); // Setup radio bearers for (uint32_t i = 0; i < rr_ded->srb_to_add_mod_list.size(); i++) { if (rr_ded->srb_to_add_mod_list[i].lc_ch_cfg_present) { printf("Setting up Default Configuration for SRB%d \n", rr_ded->srb_to_add_mod_list[i].srb_id); switch (rr_ded->srb_to_add_mod_list[i].srb_id) { case 1: mac->setup_lcid(1, 0, 1, -1, -1); break; case 2: mac->setup_lcid(2, 0, 3, -1, -1); break; } } } // for (int i=0;irr_cnfg.drb_to_add_mod_list_size;i++) { // printf("Setting up DRB%d\n", msg->rr_cnfg.drb_to_add_mod_list[i].drb_id); // // todo // } } // Hex bytes for the connection setup complete packet // Got hex bytes from http://www.sharetechnote.com/html/RACH_LTE.html uint8_t setupComplete_segm[2][41] ={ { 0x88, 0x00, 0x00, 0x20, 0x21, 0x90, 0xa0, 0x12, 0x00, 0x00, 0x80, 0xf0, 0x5e, 0x3b, 0xf1, 0x04, 0x64, 0x04, 0x1d, 0x20, 0x44, 0x2f, 0xd8, 0x4b, 0xd1, 0x02, 0x00, 0x00, 0x83, 0x03, 0x41, 0xb0, 0xe5, 0x60, 0x13, 0x81, 0x83}, {0xb0, 0x01, 0x01, 0x01, 0x48, 0x4b, 0xd1, 0x00, 0x7d, 0x21, 0x70, 0x28, 0x01, 0x5c, 0x08, 0x80, 0x00, 0xc4, 0x0f, 0x97, 0x80, 0xd0, 0x4c, 0x4b, 0xd1, 0x00, 0xc0, 0x58, 0x44, 0x0d, 0x5d, 0x62, 0x99, 0x74, 0x04, 0x03, 0x80, 0x00, 0x00, 0x00, 0x00} }; uint8_t setupComplete[80] = { 0x88, 0x00, 0x00, 0x20, 0x21, 0x90, 0xa0, 0x12, 0x00, 0x00, 0x80, 0xf0, 0x5e, 0x3b, 0xf1, 0x04, 0x64, 0x04, 0x1d, 0x20, 0x44, 0x2f, 0xd8, 0x4b, 0xd1, 0x02, 0x00, 0x00, 0x83, 0x03, 0x41, 0xb0, 0xe5, 0x60, 0x13, 0x81, 0x83, 0x48, 0x4b, 0xd1, 0x00, 0x7d, 0x21, 0x70, 0x28, 0x01, 0x5c, 0x08, 0x80, 0x00, 0xc4, 0x0f, 0x97, 0x80, 0xd0, 0x4c, 0x4b, 0xd1, 0x00, 0xc0, 0x58, 0x44, 0x0d, 0x5d, 0x62, 0x99, 0x74, 0x04, 0x03, 0x80, 0x00, 0x00, 0x00, 0x00}; uint32_t lengths[2] = {37, 41}; uint8_t reply[2] = {0x00, 0x04}; srslte::radio_multi radio; srsue::phy phy; srsue::mac mac; srslte::mac_pcap mac_pcap; prog_args_t prog_args; void sig_int_handler(int signo) { if (prog_args.do_trace) { //radio.write_trace("radio"); phy.write_trace("phy"); } if (prog_args.do_pcap) { mac_pcap.close(); } mac.stop(); exit(0); } class rlctest : public srsue::rlc_interface_mac { public: bool mib_decoded; bool sib1_decoded; bool sib2_decoded; bool connsetup_decoded; int nsegm_dcch; int send_ack; uint8_t si_window_len, sib2_period; rlctest() { mib_decoded = false; sib1_decoded = false; sib2_decoded = false; connsetup_decoded = false; nsegm_dcch = 0; si_window_len = 0; sib2_period = 0; send_ack = 0; bzero(&bit_msg, sizeof(bit_msg)); bzero(&byte_msg, sizeof(byte_msg)); } bool has_data(uint32_t lcid) { return get_buffer_state(lcid); } uint32_t get_buffer_state(uint32_t lcid) { if (lcid == 0) { if (sib2_decoded && !connsetup_decoded) { return 6; } } else if (lcid == 1) { if (connsetup_decoded && nsegm_dcch < 2) { return lengths[nsegm_dcch]; } else if (send_ack == 1) { return 2; } } return 0; } int read_pdu(uint32_t lcid, uint8_t *payload, uint32_t nof_bytes) { if (lcid == 0) { ul_ccch_msg_s ul_ccch_msg; // Prepare ConnectionRequest packet ul_ccch_msg.msg.set(ul_ccch_msg_type_c::types::c1); ul_ccch_msg.msg.c1().set(ul_ccch_msg_type_c::c1_c_::types::rrc_conn_request); ul_ccch_msg.msg.c1().rrc_conn_request().crit_exts.set( rrc_conn_request_s::crit_exts_c_::types::rrc_conn_request_r8); ul_ccch_msg.msg.c1().rrc_conn_request().crit_exts.rrc_conn_request_r8().ue_id.set( init_ue_id_c::types::random_value); ul_ccch_msg.msg.c1().rrc_conn_request().crit_exts.rrc_conn_request_r8().ue_id.random_value().from_number(1000); ul_ccch_msg.msg.c1().rrc_conn_request().crit_exts.rrc_conn_request_r8().establishment_cause = establishment_cause_e::mo_sig; asn1::bit_ref bref(payload, nof_bytes); ul_ccch_msg.pack(bref); uint32_t nbytes = (uint32_t)bref.distance_bytes(payload); // assert(nbytes<1024); uint64_t uecri = 0; uint8_t* ue_cri_ptr = (uint8_t*)&uecri; uint8_t* ptr = bit_msg.msg; for (uint32_t i=0;i= 80) { printf("Sending Connection Setup Complete length 80\n"); memcpy(payload, setupComplete, 80); return 80; } else { uint32_t r = 0; if (nof_bytes >= lengths[nsegm_dcch]) { printf("Sending Connection Setup Complete %d/2 length %d\n", nsegm_dcch, lengths[nsegm_dcch]); memcpy(payload, setupComplete_segm[nsegm_dcch], lengths[nsegm_dcch]); r = lengths[nsegm_dcch]; nsegm_dcch++; } else { r = 0; } return r; } } else if (send_ack == 1) { printf("Send RLC ACK\n"); memcpy(payload, reply, 2*sizeof(uint8_t)); send_ack = 2; return 2; } } return 0; } void write_pdu(uint32_t lcid, uint8_t *payload, uint32_t nof_bytes) { if (lcid == 0) { dl_ccch_msg_s dl_ccch_msg; printf("ConnSetup received %d bytes\n", nof_bytes); srslte_vec_fprint_byte(stdout, payload, nof_bytes); asn1::bit_ref bref(payload, nof_bytes); dl_ccch_msg.unpack(bref); printf("Response: %s\n", dl_ccch_msg.msg.c1().type().to_string().c_str()); switch (dl_ccch_msg.msg.c1().type().value) { case dl_ccch_msg_type_c::c1_c_::types::rrc_conn_setup: // Process ConnectionSetup process_connsetup(&dl_ccch_msg.msg.c1().rrc_conn_setup(), &mac, &phy); connsetup_decoded = true; break; case dl_ccch_msg_type_c::c1_c_::types::rrc_conn_reject: case dl_ccch_msg_type_c::c1_c_::types::rrc_conn_reest: case dl_ccch_msg_type_c::c1_c_::types::rrc_conn_reest_reject: break; } } else if (lcid == 1) { printf("Received on DCCH0 %d bytes\n", nof_bytes); if (send_ack == 0) { send_ack = 1; } } } void write_pdu_bcch_bch(uint8_t *payload, uint32_t nof_bytes) { mib_s mib; srslte_vec_fprint_byte(stdout, payload, nof_bytes); asn1::bit_ref bref(payload, nof_bytes); mib.unpack(bref); printf("MIB received %d bytes, BW=%s MHz\n", nof_bytes, mib.dl_bw.to_string().c_str()); mib_decoded = true; } void write_pdu_bcch_dlsch(uint8_t* payload, uint32_t nof_bytes) { bcch_dl_sch_msg_s dlsch_msg; asn1::bit_ref bref(payload, nof_bytes); dlsch_msg.unpack(bref); if (dlsch_msg.msg.c1().type().value == bcch_dl_sch_msg_type_c::c1_c_::types::sib_type1) { si_window_len = dlsch_msg.msg.c1().sib_type1().si_win_len.to_number(); sib2_period = dlsch_msg.msg.c1().sib_type1().sched_info_list[0].si_periodicity.to_number(); printf("SIB1 received %d bytes, CellID=%d, si_window=%d, sib2_period=%d\n", nof_bytes, (uint32_t)dlsch_msg.msg.c1().sib_type1().cell_access_related_info.cell_id.to_number() & 0xfff, si_window_len, sib2_period); mac.clear_rntis(); } else { sys_info_r8_ies_s::sib_type_and_info_l_& sib_list = dlsch_msg.msg.c1().sys_info().crit_exts.sys_info_r8().sib_type_and_info; if (sib_list.size() > 0 and sib_list[0].type() == sib_info_item_c::types::sib2) { printf("SIB2 received %d bytes\n", nof_bytes); setup_mac_phy_sib2(&sib_list[0].sib2(), &mac, &phy); sib2_decoded = true; mac.clear_rntis(); } } } void write_pdu_pcch(uint8_t *payload, uint32_t nof_bytes) {} void write_pdu_mch(uint32_t lcid, uint8_t *payload, uint32_t nof_bytes) {} private: LIBLTE_BIT_MSG_STRUCT bit_msg; LIBLTE_BYTE_MSG_STRUCT byte_msg; }; int main(int argc, char *argv[]) { srslte::log_filter mac_log("MAC"); rlctest my_rlc; parse_args(&prog_args, argc, argv); // Capture SIGINT to write traces if (prog_args.do_trace) { signal(SIGINT, sig_int_handler); //radio.start_trace(); phy.start_trace(); } if (prog_args.do_pcap) { if (!prog_args.do_trace) { signal(SIGINT, sig_int_handler); } mac_pcap.open("/tmp/ue_mac.pcap"); mac.start_pcap(&mac_pcap); } // Init Radio and PHY if (!radio.init()) { exit(1); } std::vector phy_log; srslte::log_filter *mylog = new srslte::log_filter("PHY"); char tmp[16]; sprintf(tmp, "PHY%d",0); phy_log.push_back(mylog); switch (prog_args.verbose) { case 1: mac_log.set_level(srslte::LOG_LEVEL_INFO); mylog->set_level(srslte::LOG_LEVEL_INFO); break; case 2: mac_log.set_level(srslte::LOG_LEVEL_DEBUG); mylog->set_level(srslte::LOG_LEVEL_DEBUG); break; } phy.init(&radio, &mac, NULL, phy_log); if (prog_args.rf_rx_gain > 0 && prog_args.rf_tx_gain > 0) { radio.set_rx_gain(prog_args.rf_rx_gain); radio.set_tx_gain(prog_args.rf_tx_gain); } else { radio.start_agc(false); radio.set_tx_rx_gain_offset(10); phy.set_agc_enable(true); } // Init MAC mac.init(&phy, &my_rlc, NULL, &mac_log); // Set RX freq radio.set_rx_freq(prog_args.rf_rx_freq); radio.set_tx_freq(prog_args.rf_tx_freq); while(1) { uint32_t tti; if (my_rlc.mib_decoded && mac.get_current_tti()) { if (!my_rlc.sib1_decoded) { usleep(10000); tti = mac.get_current_tti(); mac.bcch_start_rx(sib_start_tti(tti, 2, 5), 1); } else if (!my_rlc.sib2_decoded) { usleep(10000); tti = mac.get_current_tti(); mac.bcch_start_rx(sib_start_tti(tti, my_rlc.sib2_period, 0), my_rlc.si_window_len); } } usleep(50000); } }