/* * Copyright 2013-2019 Software Radio Systems Limited * * This file is part of srsLTE. * * srsLTE is free software: you can redistribute it and/or modify * it under the terms of the GNU Affero General Public License as * published by the Free Software Foundation, either version 3 of * the License, or (at your option) any later version. * * srsLTE is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Affero General Public License for more details. * * A copy of the GNU Affero General Public License can be found in * the LICENSE file in the top-level directory of this distribution * and at http://www.gnu.org/licenses/. * */ #include "rlc_test_common.h" #include "srslte/common/log_filter.h" #include "srslte/config.h" #include "srslte/upper/rlc.h" #include "srslte/upper/rlc_um_nr.h" #include #include #include #include #define TESTASSERT(cond) \ { \ if (!(cond)) { \ std::cout << "[" << __FUNCTION__ << "][Line " << __LINE__ << "]: FAIL at " << (#cond) << std::endl; \ return -1; \ } \ } #define PCAP 0 #define PCAP_CRNTI (0x1001) #define PCAP_TTI (666) using namespace srslte; #if PCAP #include "srslte/common/mac_nr_pcap.h" #include "srslte/common/mac_nr_pdu.h" static std::unique_ptr pcap_handle = nullptr; #endif int write_pdu_to_pcap(const uint32_t lcid, const uint8_t* payload, const uint32_t len) { #if PCAP if (pcap_handle) { byte_buffer_t tx_buffer; srslte::mac_nr_sch_pdu tx_pdu; tx_pdu.init_tx(&tx_buffer, len + 10); tx_pdu.add_sdu(lcid, payload, len); tx_pdu.pack(); pcap_handle->write_dl_crnti(tx_buffer.msg, tx_buffer.N_bytes, PCAP_CRNTI, true, PCAP_TTI); return SRSLTE_SUCCESS; } #endif return SRSLTE_ERROR; } template srslte::byte_buffer_t make_pdu_and_log(const std::array& tv) { srslte::byte_buffer_t pdu; memcpy(pdu.msg, tv.data(), tv.size()); pdu.N_bytes = tv.size(); write_pdu_to_pcap(4, tv.data(), tv.size()); return pdu; } // Helper class to create two pre-configured RLC instances class rlc_um_nr_test_context1 { public: rlc_um_nr_test_context1() : log1("RLC_UM_1"), log2("RLC_UM_2"), timers(16), rlc1(&log1, 3, &tester, &tester, &timers), rlc2(&log2, 3, &tester, &tester, &timers) { // setup logging log1.set_level(srslte::LOG_LEVEL_DEBUG); log2.set_level(srslte::LOG_LEVEL_DEBUG); log1.set_hex_limit(-1); log2.set_hex_limit(-1); // configure RLC entities rlc_config_t cnfg = rlc_config_t::default_rlc_um_nr_config(6); if (rlc1.configure(cnfg) != true) { fprintf(stderr, "Couldn't configure RLC1 object\n"); } if (rlc2.configure(cnfg) != true) { fprintf(stderr, "Couldn't configure RLC2 object\n"); } tester.set_expected_sdu_len(1); } srslte::log_filter log1, log2; srslte::timer_handler timers; rlc_um_tester tester; rlc_um_nr rlc1, rlc2; }; // Basic test to write UM PDU with 6 bit SN (full SDUs are transmitted in each PDU) int rlc_um_nr_test1() { rlc_um_nr_test_context1 ctxt; const uint32_t num_sdus = 5, num_pdus = 5; // Push 5 SDUs into RLC1 byte_buffer_pool* pool = byte_buffer_pool::get_instance(); unique_byte_buffer_t sdu_bufs[num_sdus]; for (uint32_t i = 0; i < num_sdus; i++) { sdu_bufs[i] = srslte::allocate_unique_buffer(*pool, true); *sdu_bufs[i]->msg = i; // Write the index into the buffer sdu_bufs[i]->N_bytes = 1; // Give each buffer a size of 1 byte ctxt.rlc1.write_sdu(std::move(sdu_bufs[i])); } TESTASSERT(14 == ctxt.rlc1.get_buffer_state()); // Read 5 PDUs from RLC1 (1 byte each) unique_byte_buffer_t pdu_bufs[num_pdus]; for (uint32_t i = 0; i < num_pdus; i++) { pdu_bufs[i] = srslte::allocate_unique_buffer(*pool, true); int len = ctxt.rlc1.read_pdu(pdu_bufs[i]->msg, 4); // 3 bytes for header + payload pdu_bufs[i]->N_bytes = len; // write PCAP write_pdu_to_pcap(4, pdu_bufs[i]->msg, pdu_bufs[i]->N_bytes); } TESTASSERT(0 == ctxt.rlc1.get_buffer_state()); // Write 5 PDUs into RLC2 for (uint32_t i = 0; i < num_pdus; i++) { ctxt.rlc2.write_pdu(pdu_bufs[i]->msg, pdu_bufs[i]->N_bytes); } TESTASSERT(0 == ctxt.rlc2.get_buffer_state()); TESTASSERT(num_sdus == ctxt.tester.get_num_sdus()); for (uint32_t i = 0; i < ctxt.tester.sdus.size(); i++) { TESTASSERT(ctxt.tester.sdus.at(i)->N_bytes == 1); TESTASSERT(*(ctxt.tester.sdus[i]->msg) == i); } return SRSLTE_SUCCESS; } // Basic test for SDU segmentation int rlc_um_nr_test2(bool reverse_rx = false) { rlc_um_nr_test_context1 ctxt; const uint32_t num_sdus = 1; const uint32_t sdu_size = 100; ctxt.tester.set_expected_sdu_len(sdu_size); // Push SDUs into RLC1 byte_buffer_pool* pool = byte_buffer_pool::get_instance(); unique_byte_buffer_t sdu_bufs[num_sdus]; for (uint32_t i = 0; i < num_sdus; i++) { sdu_bufs[i] = srslte::allocate_unique_buffer(*pool, true); // Write the index into the buffer for (uint32_t k = 0; k < sdu_size; ++k) { sdu_bufs[i]->msg[k] = i; } sdu_bufs[i]->N_bytes = sdu_size; ctxt.rlc1.write_sdu(std::move(sdu_bufs[i])); } // FIXME: check buffer state calculation TESTASSERT(103 == ctxt.rlc1.get_buffer_state()); // Read PDUs from RLC1 with grant of 25 Bytes each const uint32_t max_num_pdus = 10; uint32 num_pdus = 0; unique_byte_buffer_t pdu_bufs[max_num_pdus]; while (ctxt.rlc1.get_buffer_state() != 0 && num_pdus < max_num_pdus) { pdu_bufs[num_pdus] = srslte::allocate_unique_buffer(*pool, true); int len = ctxt.rlc1.read_pdu(pdu_bufs[num_pdus]->msg, 25); // 3 bytes for header + payload pdu_bufs[num_pdus]->N_bytes = len; // write PCAP write_pdu_to_pcap(4, pdu_bufs[num_pdus]->msg, pdu_bufs[num_pdus]->N_bytes); num_pdus++; } TESTASSERT(0 == ctxt.rlc1.get_buffer_state()); // Write PDUs into RLC2 if (reverse_rx) { // receive PDUs in reverse order for (uint32_t i = num_pdus; i > 0; i--) { ctxt.rlc2.write_pdu(pdu_bufs[i - 1]->msg, pdu_bufs[i - 1]->N_bytes); } } else { // receive PDUs in order for (uint32_t i = 0; i < num_pdus; i++) { ctxt.rlc2.write_pdu(pdu_bufs[i]->msg, pdu_bufs[i]->N_bytes); } } TESTASSERT(0 == ctxt.rlc2.get_buffer_state()); TESTASSERT(num_sdus == ctxt.tester.get_num_sdus()); for (uint32_t i = 0; i < ctxt.tester.sdus.size(); i++) { TESTASSERT(ctxt.tester.sdus.at(i)->N_bytes == sdu_size); TESTASSERT(*(ctxt.tester.sdus[i]->msg) == i); } return SRSLTE_SUCCESS; } // Test reception of segmented RLC PDUs (two different SDUs with same PDU segmentation) int rlc_um_nr_test4() { rlc_um_nr_test_context1 ctxt; const uint32_t num_sdus = 2; const uint32_t sdu_size = 100; ctxt.tester.set_expected_sdu_len(sdu_size); // Push SDUs into RLC1 byte_buffer_pool* pool = byte_buffer_pool::get_instance(); unique_byte_buffer_t sdu_bufs[num_sdus]; for (uint32_t i = 0; i < num_sdus; i++) { sdu_bufs[i] = srslte::allocate_unique_buffer(*pool, true); // Write the index into the buffer for (uint32_t k = 0; k < sdu_size; ++k) { sdu_bufs[i]->msg[k] = i; } sdu_bufs[i]->N_bytes = sdu_size; ctxt.rlc1.write_sdu(std::move(sdu_bufs[i])); } // FIXME: check buffer state calculation int bsr = ctxt.rlc1.get_buffer_state(); TESTASSERT(bsr == 205); // Read PDUs from RLC1 with grant of 25 Bytes each const uint32_t max_num_pdus = 20; uint32 num_pdus = 0; unique_byte_buffer_t pdu_bufs[max_num_pdus]; while (ctxt.rlc1.get_buffer_state() != 0 && num_pdus < max_num_pdus) { pdu_bufs[num_pdus] = srslte::allocate_unique_buffer(*pool, true); int len = ctxt.rlc1.read_pdu(pdu_bufs[num_pdus]->msg, 25); // 3 bytes for header + payload pdu_bufs[num_pdus]->N_bytes = len; num_pdus++; } TESTASSERT(0 == ctxt.rlc1.get_buffer_state()); // Write PDUs into RLC2 (except 1 and 6 for (uint32_t i = 0; i < num_pdus; i++) { if (i != 1 && i != 6) { ctxt.rlc2.write_pdu(pdu_bufs[i]->msg, pdu_bufs[i]->N_bytes); write_pdu_to_pcap(4, pdu_bufs[i]->msg, pdu_bufs[i]->N_bytes); } } // write remaining two PDUs in reverse-order (so SN=1 is received first) ctxt.rlc2.write_pdu(pdu_bufs[6]->msg, pdu_bufs[6]->N_bytes); write_pdu_to_pcap(4, pdu_bufs[6]->msg, pdu_bufs[6]->N_bytes); ctxt.rlc2.write_pdu(pdu_bufs[1]->msg, pdu_bufs[1]->N_bytes); write_pdu_to_pcap(4, pdu_bufs[1]->msg, pdu_bufs[1]->N_bytes); TESTASSERT(0 == ctxt.rlc2.get_buffer_state()); TESTASSERT(num_sdus == ctxt.tester.get_num_sdus()); for (uint32_t i = 0; i < ctxt.tester.sdus.size(); i++) { TESTASSERT(ctxt.tester.sdus.at(i)->N_bytes == sdu_size); // common tester makes sure the all bytes within the SDU are the same, but it doesn't verify the SDUs are the ones // transmitted, so check this here if (i == 0) { // first SDU is SN=1 TESTASSERT(*(ctxt.tester.sdus.at(i)->msg) == 0x01); } else { // second SDU is SN=0 TESTASSERT(*(ctxt.tester.sdus.at(i)->msg) == 0x00); } } return SRSLTE_SUCCESS; } // Handling of re-transmitted segments (e.g. after PHY retransmission) int rlc_um_nr_test5(const uint32_t last_sn) { rlc_um_nr_test_context1 ctxt; const uint32_t num_sdus = 1; const uint32_t sdu_size = 100; ctxt.tester.set_expected_sdu_len(sdu_size); // Push SDUs into RLC1 byte_buffer_pool* pool = byte_buffer_pool::get_instance(); unique_byte_buffer_t sdu_bufs[num_sdus]; for (uint32_t i = 0; i < num_sdus; i++) { sdu_bufs[i] = srslte::allocate_unique_buffer(*pool, true); // Write the index into the buffer for (uint32_t k = 0; k < sdu_size; ++k) { sdu_bufs[i]->msg[k] = i; } sdu_bufs[i]->N_bytes = sdu_size; ctxt.rlc1.write_sdu(std::move(sdu_bufs[i])); } // FIXME: check buffer state calculation TESTASSERT(103 == ctxt.rlc1.get_buffer_state()); // Read PDUs from RLC1 with grant of 25 Bytes each const uint32_t max_num_pdus = 10; uint32 num_pdus = 0; unique_byte_buffer_t pdu_bufs[max_num_pdus]; while (ctxt.rlc1.get_buffer_state() != 0 && num_pdus < max_num_pdus) { pdu_bufs[num_pdus] = srslte::allocate_unique_buffer(*pool, true); int len = ctxt.rlc1.read_pdu(pdu_bufs[num_pdus]->msg, 25); // 3 bytes for header + payload pdu_bufs[num_pdus]->N_bytes = len; // write PCAP write_pdu_to_pcap(4, pdu_bufs[num_pdus]->msg, pdu_bufs[num_pdus]->N_bytes); num_pdus++; } TESTASSERT(0 == ctxt.rlc1.get_buffer_state()); // Write alls PDUs twice into RLC2 (except third) for (uint32_t k = 0; k < 2; k++) { for (uint32_t i = 0; i < num_pdus; i++) { if (i != last_sn) { ctxt.rlc2.write_pdu(pdu_bufs[i]->msg, pdu_bufs[i]->N_bytes); } } } // Write third PDU ctxt.rlc2.write_pdu(pdu_bufs[last_sn]->msg, pdu_bufs[last_sn]->N_bytes); TESTASSERT(0 == ctxt.rlc2.get_buffer_state()); TESTASSERT(num_sdus == ctxt.tester.get_num_sdus()); for (uint32_t i = 0; i < ctxt.tester.sdus.size(); i++) { TESTASSERT(ctxt.tester.sdus.at(i)->N_bytes == sdu_size); TESTASSERT(*(ctxt.tester.sdus[i]->msg) == i); } return SRSLTE_SUCCESS; } // Test of wrap-around of reassembly window int rlc_um_nr_test6() { rlc_um_nr_test_context1 ctxt; const uint32_t num_sdus = 64; const uint32_t sdu_size = 10; ctxt.tester.set_expected_sdu_len(sdu_size); // Push SDUs into RLC1 byte_buffer_pool* pool = byte_buffer_pool::get_instance(); unique_byte_buffer_t sdu_bufs[num_sdus]; for (uint32_t i = 0; i < num_sdus; i++) { sdu_bufs[i] = srslte::allocate_unique_buffer(*pool, true); // Write the index into the buffer for (uint32_t k = 0; k < sdu_size; ++k) { sdu_bufs[i]->msg[k] = i; } sdu_bufs[i]->N_bytes = sdu_size; ctxt.rlc1.write_sdu(std::move(sdu_bufs[i])); } // FIXME: check buffer state calculation // TESTASSERT(103 == ctxt.rlc1.get_buffer_state()); // Read PDUs from RLC1 with grant of 8 Bytes each const uint32_t max_num_pdus = num_sdus * 2; // we need 2 PDUs for each SDU uint32 num_pdus = 0; unique_byte_buffer_t pdu_bufs[max_num_pdus]; while (ctxt.rlc1.get_buffer_state() != 0 && num_pdus < max_num_pdus) { pdu_bufs[num_pdus] = srslte::allocate_unique_buffer(*pool, true); int len = ctxt.rlc1.read_pdu(pdu_bufs[num_pdus]->msg, 8); // 3 bytes for header + payload pdu_bufs[num_pdus]->N_bytes = len; // write PCAP write_pdu_to_pcap(4, pdu_bufs[num_pdus]->msg, pdu_bufs[num_pdus]->N_bytes); num_pdus++; } TESTASSERT(0 == ctxt.rlc1.get_buffer_state()); // Write PDUs into RLC2 for (uint32_t i = 0; i < num_pdus; i++) { ctxt.rlc2.write_pdu(pdu_bufs[i]->msg, pdu_bufs[i]->N_bytes); } TESTASSERT(0 == ctxt.rlc2.get_buffer_state()); TESTASSERT(num_sdus == ctxt.tester.get_num_sdus()); for (uint32_t i = 0; i < ctxt.tester.sdus.size(); i++) { TESTASSERT(ctxt.tester.sdus.at(i)->N_bytes == sdu_size); TESTASSERT(*(ctxt.tester.sdus[i]->msg) == i); } return SRSLTE_SUCCESS; } // Segment loss received too many new PDUs (lost PDU outside of reassembly window) int rlc_um_nr_test7() { rlc_um_nr_test_context1 ctxt; const uint32_t num_sdus = 64; const uint32_t sdu_size = 10; ctxt.tester.set_expected_sdu_len(sdu_size); // Push SDUs into RLC1 byte_buffer_pool* pool = byte_buffer_pool::get_instance(); unique_byte_buffer_t sdu_bufs[num_sdus]; for (uint32_t i = 0; i < num_sdus; i++) { sdu_bufs[i] = srslte::allocate_unique_buffer(*pool, true); // Write the index into the buffer for (uint32_t k = 0; k < sdu_size; ++k) { sdu_bufs[i]->msg[k] = i; } sdu_bufs[i]->N_bytes = sdu_size; ctxt.rlc1.write_sdu(std::move(sdu_bufs[i])); } // FIXME: check buffer state calculation // TESTASSERT(103 == ctxt.rlc1.get_buffer_state()); // Read PDUs from RLC1 with grant of 8 Bytes each const uint32_t max_num_pdus = num_sdus * 2; // we need 2 PDUs for each SDU uint32 num_pdus = 0; unique_byte_buffer_t pdu_bufs[max_num_pdus]; while (ctxt.rlc1.get_buffer_state() != 0 && num_pdus < max_num_pdus) { pdu_bufs[num_pdus] = srslte::allocate_unique_buffer(*pool, true); int len = ctxt.rlc1.read_pdu(pdu_bufs[num_pdus]->msg, 8); // 3 bytes for header + payload pdu_bufs[num_pdus]->N_bytes = len; // write PCAP write_pdu_to_pcap(4, pdu_bufs[num_pdus]->msg, pdu_bufs[num_pdus]->N_bytes); num_pdus++; } TESTASSERT(0 == ctxt.rlc1.get_buffer_state()); // Write PDUs into RLC2 (except 11th) for (uint32_t i = 0; i < num_pdus; i++) { if (i != 10) { ctxt.rlc2.write_pdu(pdu_bufs[i]->msg, pdu_bufs[i]->N_bytes); } } TESTASSERT(0 == ctxt.rlc2.get_buffer_state()); TESTASSERT(num_sdus - 1 == ctxt.tester.get_num_sdus()); for (uint32_t i = 0; i < ctxt.tester.sdus.size(); i++) { TESTASSERT(ctxt.tester.sdus.at(i)->N_bytes == sdu_size); } rlc_bearer_metrics_t rlc2_metrics = ctxt.rlc2.get_metrics(); TESTASSERT(rlc2_metrics.num_lost_pdus == 1); return SRSLTE_SUCCESS; } // Segment loss and expiry of reassembly timer int rlc_um_nr_test8() { rlc_um_nr_test_context1 ctxt; const uint32_t num_sdus = 10; const uint32_t sdu_size = 10; ctxt.tester.set_expected_sdu_len(sdu_size); // Push SDUs into RLC1 byte_buffer_pool* pool = byte_buffer_pool::get_instance(); unique_byte_buffer_t sdu_bufs[num_sdus]; for (uint32_t i = 0; i < num_sdus; i++) { sdu_bufs[i] = srslte::allocate_unique_buffer(*pool, true); // Write the index into the buffer for (uint32_t k = 0; k < sdu_size; ++k) { sdu_bufs[i]->msg[k] = i; } sdu_bufs[i]->N_bytes = sdu_size; ctxt.rlc1.write_sdu(std::move(sdu_bufs[i])); } // FIXME: check buffer state calculation // TESTASSERT(103 == ctxt.rlc1.get_buffer_state()); // Read PDUs from RLC1 with grant of 8 Bytes each const uint32_t max_num_pdus = 20 * 2; // we need 2 PDUs for each SDU uint32 num_pdus = 0; unique_byte_buffer_t pdu_bufs[max_num_pdus]; while (ctxt.rlc1.get_buffer_state() != 0 && num_pdus < max_num_pdus) { pdu_bufs[num_pdus] = srslte::allocate_unique_buffer(*pool, true); int len = ctxt.rlc1.read_pdu(pdu_bufs[num_pdus]->msg, 8); // 3 bytes for header + payload pdu_bufs[num_pdus]->N_bytes = len; // write PCAP write_pdu_to_pcap(4, pdu_bufs[num_pdus]->msg, pdu_bufs[num_pdus]->N_bytes); num_pdus++; } TESTASSERT(0 == ctxt.rlc1.get_buffer_state()); // Write PDUs into RLC2 (except 2nd) for (uint32_t i = 0; i < num_pdus; i++) { if (i != 2) { ctxt.rlc2.write_pdu(pdu_bufs[i]->msg, pdu_bufs[i]->N_bytes); } } TESTASSERT(0 == ctxt.rlc2.get_buffer_state()); // let t-reassembly expire while (ctxt.timers.nof_running_timers() != 0) { ctxt.timers.step_all(); } TESTASSERT(num_sdus - 1 == ctxt.tester.get_num_sdus()); for (uint32_t i = 0; i < ctxt.tester.sdus.size(); i++) { TESTASSERT(ctxt.tester.sdus.at(i)->N_bytes == sdu_size); } rlc_bearer_metrics_t rlc2_metrics = ctxt.rlc2.get_metrics(); TESTASSERT(rlc2_metrics.num_lost_pdus == 1); return SRSLTE_SUCCESS; } int main(int argc, char** argv) { #if PCAP pcap_handle = std::unique_ptr(new srslte::mac_nr_pcap()); pcap_handle->open("rlc_um_nr_test.pcap"); #endif if (rlc_um_nr_test1()) { fprintf(stderr, "rlc_um_nr_test1() failed.\n"); return SRSLTE_ERROR; } if (rlc_um_nr_test2()) { fprintf(stderr, "rlc_um_nr_test2() failed.\n"); return SRSLTE_ERROR; } // same like above but PDUs delivered in reverse order if (rlc_um_nr_test2(true)) { fprintf(stderr, "rlc_um_nr_test2(true) failed.\n"); return SRSLTE_ERROR; } if (rlc_um_nr_test4()) { fprintf(stderr, "rlc_um_nr_test4() failed.\n"); return SRSLTE_ERROR; } for (uint32_t i = 0; i < 5; ++i) { if (rlc_um_nr_test5(i)) { fprintf(stderr, "rlc_um_nr_test5() for i=%d failed.\n", i); return SRSLTE_ERROR; } } if (rlc_um_nr_test6()) { fprintf(stderr, "rlc_um_nr_test6() failed.\n"); return SRSLTE_ERROR; } if (rlc_um_nr_test7()) { fprintf(stderr, "rlc_um_nr_test7() failed.\n"); return SRSLTE_ERROR; } if (rlc_um_nr_test8()) { fprintf(stderr, "rlc_um_nr_test8() failed.\n"); return SRSLTE_ERROR; } return SRSLTE_SUCCESS; }