/* * Copyright 2013-2019 Software Radio Systems Limited * * This file is part of srsLTE. * * srsLTE is free software: you can redistribute it and/or modify * it under the terms of the GNU Affero General Public License as * published by the Free Software Foundation, either version 3 of * the License, or (at your option) any later version. * * srsLTE is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Affero General Public License for more details. * * A copy of the GNU Affero General Public License can be found in * the LICENSE file in the top-level directory of this distribution * and at http://www.gnu.org/licenses/. * */ #include "srslte/common/buffer_pool.h" #include "srslte/common/log_filter.h" #include "srslte/common/security.h" #include "srslte/upper/pdcp_entity_nr.h" #include #define TESTASSERT(cond) \ { \ if (!(cond)) { \ std::cout << "[" << __FUNCTION__ << "][Line " << __LINE__ << "]: FAIL at " << (#cond) << std::endl; \ return -1; \ } \ } // Encription and Integrity Keys uint8_t k_int[] = {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x28, 0x29, 0x30, 0x31}; uint8_t k_enc[] = {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x28, 0x29, 0x30, 0x31}; // Test SDUs for tx uint8_t sdu1[] = {0x18, 0xE2}; uint32_t SDU1_LEN = 2; // Test PDUs for rx uint8_t pdu1[] = {0x80, 0x00, 0x8f, 0xe3, 0xe0, 0xdf, 0x82, 0x92}; uint32_t PDU1_LEN = 8; uint8_t pdu2[] = {0x88, 0x00, 0x8d, 0x2c, 0x47, 0x5e, 0xb1, 0x5b}; uint32_t PDU2_LEN = 8; uint8_t pdu3[] = {0x80, 0x00, 0x97, 0xbe, 0xa3, 0x32, 0xfa, 0x61}; uint32_t PDU3_LEN = 8; uint8_t pdu4[] = {0x80, 0x00, 0x00, 0x8f, 0xe3, 0xe0, 0xdf, 0x82, 0x92}; uint32_t PDU4_LEN = 9; uint8_t pdu5[] = {0x82, 0x00, 0x00, 0x15, 0x01, 0xf4, 0xb0, 0xfc, 0xc5}; uint32_t PDU5_LEN = 9; uint8_t pdu6[] = {0x80, 0x00, 0x00, 0xc2, 0x47, 0xa8, 0xdd, 0xc0, 0x73}; uint32_t PDU6_LEN = 9; // dummy classes class rlc_dummy : public srsue::rlc_interface_pdcp { public: rlc_dummy(srslte::log* log_) : log(log_) {} void get_last_sdu(const srslte::unique_byte_buffer_t& pdu) { memcpy(pdu->msg, last_pdcp_pdu->msg, last_pdcp_pdu->N_bytes); pdu->N_bytes = last_pdcp_pdu->N_bytes; return; } void write_sdu(uint32_t lcid, srslte::unique_byte_buffer_t sdu, bool blocking = true) { log->info_hex(sdu->msg, sdu->N_bytes, "RLC SDU"); last_pdcp_pdu.swap(sdu); } private: srslte::log* log; srslte::unique_byte_buffer_t last_pdcp_pdu; bool rb_is_um(uint32_t lcid) { return false; } }; class rrc_dummy : public srsue::rrc_interface_pdcp { public: rrc_dummy(srslte::log* log_) : log(log_) {} void write_pdu(uint32_t lcid, srslte::unique_byte_buffer_t pdu) {} void write_pdu_bcch_bch(srslte::unique_byte_buffer_t pdu) {} void write_pdu_bcch_dlsch(srslte::unique_byte_buffer_t pdu) {} void write_pdu_pcch(srslte::unique_byte_buffer_t pdu) {} void write_pdu_mch(uint32_t lcid, srslte::unique_byte_buffer_t pdu) {} std::string get_rb_name(uint32_t lcid) { return "None"; } private: srslte::log* log; }; class gw_dummy : public srsue::gw_interface_pdcp { public: gw_dummy(srslte::log* log_) : log(log_) {} void write_pdu_mch(uint32_t lcid, srslte::unique_byte_buffer_t pdu) {} uint32_t rx_count = 0; void get_last_pdu(const srslte::unique_byte_buffer_t& pdu) { memcpy(pdu->msg, last_pdu->msg, last_pdu->N_bytes); pdu->N_bytes = last_pdu->N_bytes; return; } void write_pdu(uint32_t lcid, srslte::unique_byte_buffer_t pdu) { log->info_hex(pdu->msg, pdu->N_bytes, "GW PDU"); rx_count++; last_pdu.swap(pdu); } private: srslte::log* log; srslte::unique_byte_buffer_t last_pdu; }; /* * Genric function to test transmission of in-sequence packets */ int test_tx(uint32_t n_packets, uint8_t pdcp_sn_len, srslte::unique_byte_buffer_t pdu_exp, srslte::byte_buffer_pool* pool, srslte::log* log) { srslte::pdcp_entity_nr pdcp; srslte::srslte_pdcp_config_t cfg = { 1, srslte::PDCP_RB_IS_DRB, srslte::SECURITY_DIRECTION_UPLINK, srslte::SECURITY_DIRECTION_DOWNLINK, pdcp_sn_len}; rlc_dummy rlc(log); rrc_dummy rrc(log); gw_dummy gw(log); pdcp.init(&rlc, &rrc, &gw, log, 0, cfg); pdcp.config_security( k_enc, k_int, k_enc, k_int, srslte::CIPHERING_ALGORITHM_ID_128_EEA2, srslte::INTEGRITY_ALGORITHM_ID_128_EIA2); pdcp.enable_integrity(); pdcp.enable_encryption(); // Test SDU srslte::unique_byte_buffer_t sdu = allocate_unique_buffer(*pool); memcpy(sdu->msg, sdu1, SDU1_LEN); sdu->N_bytes = SDU1_LEN; // Run test for (uint32_t i = 0; i < n_packets; ++i) { // Test SDU srslte::unique_byte_buffer_t sdu = allocate_unique_buffer(*pool); memcpy(sdu->msg, sdu1, SDU1_LEN); sdu->N_bytes = SDU1_LEN; pdcp.write_sdu(std::move(sdu), true); } srslte::unique_byte_buffer_t pdu_act = allocate_unique_buffer(*pool); rlc.get_last_sdu(pdu_act); TESTASSERT(pdu_act->N_bytes == pdu_exp->N_bytes); for (uint32_t i = 0; i < pdu_exp->N_bytes; ++i) { TESTASSERT(pdu_act->msg[i] == pdu_exp->msg[i]); } return 0; } /* * TX Test: PDCP Entity with SN LEN = 12 and 18. Tested COUNT = 0, 2048 and 4096 * PDCP entity configured with EIA2 and EEA2 */ int test_tx_all(srslte::byte_buffer_pool* pool, srslte::log* log) { /* * TX Test 1: PDCP Entity with SN LEN = 12 * PDCP entity configured with EIA2 and EEA2 * TX_NEXT = 0. * Input: {0x18, 0xE2} * Output: PDCP Header {0x80, 0x00}, Ciphered Text {0x8f, 0xe3}, MAC-I {0xe0, 0xdf, 0x82, 0x92} */ srslte::unique_byte_buffer_t pdu_exp_sn0_len12 = allocate_unique_buffer(*pool); memcpy(pdu_exp_sn0_len12->msg, pdu1, PDU1_LEN); pdu_exp_sn0_len12->N_bytes = PDU1_LEN; TESTASSERT(test_tx(1, srslte::PDCP_SN_LEN_12, std::move(pdu_exp_sn0_len12), pool, log) == 0); /* * TX Test 2: PDCP Entity with SN LEN = 12 * PDCP entity configured with EIA2 and EEA2 * TX_NEXT = 2048. * Input: {0x18, 0xE2} * Output: PDCP Header {0x88, 0x00}, Ciphered Text {0x8d, 0x2c}, MAC-I {0x47, 0x5e, 0xb1, 0x5b} */ srslte::unique_byte_buffer_t pdu_exp_sn2048_len12 = allocate_unique_buffer(*pool); memcpy(pdu_exp_sn2048_len12->msg, pdu2, PDU2_LEN); pdu_exp_sn2048_len12->N_bytes = PDU2_LEN; TESTASSERT(test_tx(2049, srslte::PDCP_SN_LEN_12, std::move(pdu_exp_sn2048_len12), pool, log) == 0); /* * TX Test 3: PDCP Entity with SN LEN = 12 * PDCP entity configured with EIA2 and EEA2 * TX_NEXT = 4096. * Input: {0x18, 0xE2} * Output: PDCP Header {0x80,0x00}, Ciphered Text {0x97, 0xbe}, MAC-I {0xa3, 0x32, 0xfa, 0x61} */ srslte::unique_byte_buffer_t pdu_exp_sn4096_len12 = allocate_unique_buffer(*pool); memcpy(pdu_exp_sn4096_len12->msg, pdu3, PDU3_LEN); pdu_exp_sn4096_len12->N_bytes = PDU3_LEN; TESTASSERT(test_tx(4097, srslte::PDCP_SN_LEN_12, std::move(pdu_exp_sn4096_len12), pool, log) == 0); /* * TX Test 4: PDCP Entity with SN LEN = 18 * PDCP entity configured with EIA2 and EEA2 * TX_NEXT = 0. * Input: {0x18, 0xE2} * Output: PDCP Header {0x80, 0x80, 0x00}, Ciphered Text {0x8f, 0xe3}, MAC-I {0xe0, 0xdf, 0x82, 0x92} */ srslte::unique_byte_buffer_t pdu_exp_sn0_len18 = allocate_unique_buffer(*pool); memcpy(pdu_exp_sn0_len18->msg, pdu4, PDU4_LEN); pdu_exp_sn0_len18->N_bytes = PDU4_LEN; TESTASSERT(test_tx(1, srslte::PDCP_SN_LEN_18, std::move(pdu_exp_sn0_len18), pool, log) == 0); /* * TX Test 5: PDCP Entity with SN LEN = 18 * PDCP entity configured with EIA2 and EEA2 * TX_NEXT = 131072. * Input: {0x18, 0xE2} * Output: PDCP Header {0x82, 0x00, 0x00}, Ciphered Text {0x15, 0x01}, MAC-I {0xf4, 0xb0, 0xfc, 0xc5} */ srslte::unique_byte_buffer_t pdu_exp_sn131072_len18 = allocate_unique_buffer(*pool); memcpy(pdu_exp_sn131072_len18->msg, pdu5, PDU5_LEN); pdu_exp_sn131072_len18->N_bytes = PDU5_LEN; TESTASSERT(test_tx(131073, srslte::PDCP_SN_LEN_18, std::move(pdu_exp_sn131072_len18), pool, log) == 0); /* * TX Test 6: PDCP Entity with SN LEN = 18 * PDCP entity configured with EIA2 and EEA2 * TX_NEXT = 262144. * Input: {0x18, 0xE2} * Output: PDCP Header {0x80, 0x00, 0x00}, Ciphered Text {0xc2, 0x47}, MAC-I {0xa8, 0xdd, 0xc0, 0x73} */ srslte::unique_byte_buffer_t pdu_exp_sn262144_len18 = allocate_unique_buffer(*pool); memcpy(pdu_exp_sn262144_len18->msg, pdu6, PDU6_LEN); pdu_exp_sn262144_len18->N_bytes = PDU6_LEN; TESTASSERT(test_tx(262145, srslte::PDCP_SN_LEN_18, std::move(pdu_exp_sn262144_len18), pool, log) == 0); return 0; } /* * RX Test: PDCP Entity with SN LEN = 12 and 18. Tested 4097 packets received without losses. * PDCP entity configured with EIA2 and EEA2 */ int test_rx_in_sequence(uint64_t n_packets, uint8_t pdcp_sn_len, srslte::byte_buffer_pool* pool, srslte::log* log) { srslte::pdcp_entity_nr pdcp_tx; srslte::pdcp_entity_nr pdcp_rx; srslte::srslte_pdcp_config_t cfg_tx = { 1, srslte::PDCP_RB_IS_DRB, srslte::SECURITY_DIRECTION_UPLINK, srslte::SECURITY_DIRECTION_DOWNLINK, pdcp_sn_len}; srslte::srslte_pdcp_config_t cfg_rx = { 1, srslte::PDCP_RB_IS_DRB, srslte::SECURITY_DIRECTION_DOWNLINK, srslte::SECURITY_DIRECTION_UPLINK, pdcp_sn_len}; rlc_dummy rlc_tx(log); rrc_dummy rrc_tx(log); gw_dummy gw_tx(log); rlc_dummy rlc_rx(log); rrc_dummy rrc_rx(log); gw_dummy gw_rx(log); pdcp_tx.init(&rlc_tx, &rrc_tx, &gw_tx, log, 0, cfg_tx); pdcp_tx.config_security( k_enc, k_int, k_enc, k_int, srslte::CIPHERING_ALGORITHM_ID_128_EEA2, srslte::INTEGRITY_ALGORITHM_ID_128_EIA2); pdcp_tx.enable_integrity(); pdcp_tx.enable_encryption(); pdcp_rx.init(&rlc_rx, &rrc_rx, &gw_rx, log, 0, cfg_rx); pdcp_rx.config_security( k_enc, k_int, k_enc, k_int, srslte::CIPHERING_ALGORITHM_ID_128_EEA2, srslte::INTEGRITY_ALGORITHM_ID_128_EIA2); pdcp_rx.enable_integrity(); pdcp_rx.enable_encryption(); srslte::unique_byte_buffer_t sdu_act = allocate_unique_buffer(*pool); srslte::unique_byte_buffer_t sdu_exp = allocate_unique_buffer(*pool); memcpy(sdu_exp->msg, sdu1, SDU1_LEN); sdu_exp->N_bytes = SDU1_LEN; // Generate test message and // decript and check matching SDUs for (uint64_t i = 0; i < n_packets; ++i) { srslte::unique_byte_buffer_t sdu = allocate_unique_buffer(*pool); srslte::unique_byte_buffer_t pdu = allocate_unique_buffer(*pool); memcpy(sdu->msg, sdu_exp->msg, SDU1_LEN); sdu->N_bytes = SDU1_LEN; // Generate encripted and integrity protected PDU pdcp_tx.write_sdu(std::move(sdu), true); rlc_tx.get_last_sdu(pdu); pdcp_rx.write_pdu(std::move(pdu)); gw_rx.get_last_pdu(sdu_act); TESTASSERT(sdu_exp->N_bytes == sdu_act->N_bytes); for (uint32_t j = 0; j < sdu_act->N_bytes; ++j) { TESTASSERT(sdu_exp->msg[j] == sdu_act->msg[j]); } } return 0; } // Setup all tests int run_all_tests(srslte::byte_buffer_pool* pool) { // Setup log srslte::log_filter log("PDCP NR Test"); log.set_level(srslte::LOG_LEVEL_DEBUG); log.set_hex_limit(128); TESTASSERT(test_tx_all(pool, &log) == 0); TESTASSERT(test_rx_in_sequence(4097, srslte::PDCP_SN_LEN_12, pool, &log) == 0); // TESTASSERT(test_rx_in_sequence(4294967297, srslte::PDCP_SN_LEN_12, pool, &log) == 0); TESTASSERT(test_rx_in_sequence(262145, srslte::PDCP_SN_LEN_18, pool, &log) == 0); return 0; } int main(int argc, char** argv) { run_all_tests(srslte::byte_buffer_pool::get_instance()); srslte::byte_buffer_pool::cleanup(); }