/** * * \section COPYRIGHT * * Copyright 2013-2014 The libLTE Developers. See the * COPYRIGHT file at the top-level directory of this distribution. * * \section LICENSE * * This file is part of the libLTE library. * * libLTE is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as * published by the Free Software Foundation, either version 3 of * the License, or (at your option) any later version. * * libLTE is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * A copy of the GNU Lesser General Public License can be found in * the LICENSE file in the top-level directory of this distribution * and at http://www.gnu.org/licenses/. * */ #include #include #include #include #include #include #include #include #include #include #include "liblte/rrc/rrc.h" #include "liblte/phy/phy.h" #include "liblte/cuhd/cuhd.h" #include "../cuhd_utils.h" #include "cell_scanner.h" #define B210_DEFAULT_GAIN 40.0 #define B210_DEFAULT_GAIN_CORREC 80.0 // Gain of the Rx chain when the gain is set to 40 int cuhd_recv_wrapper(void *h, void *data, uint32_t nsamples) { DEBUG(" ---- Receive %d samples ---- \n", nsamples); return cuhd_recv(h, data, nsamples, 1); } int cell_scanner_init(cell_scanner_t *q, cell_scanner_config_t *config) { bzero(q, sizeof(cell_scanner_t)); memcpy(&q->config, config, sizeof(cell_scanner_config_t)); printf("Opening UHD device...\n"); if (cuhd_open(q->config.uhd_args, &q->uhd)) { fprintf(stderr, "Error opening uhd\n"); return -1; } /* Set receiver gain */ cuhd_set_rx_gain(q->uhd, B210_DEFAULT_GAIN); return 0; } void cell_scanner_close(cell_scanner_t *q) { cuhd_close(q->uhd); } int cell_scanner_all_cells(cell_scanner_t *q, float frequency, cell_scanner_result_t *result) { return cell_scanner_cell(q, frequency, -1, result); } #define MAX_SINFO 10 int cell_scanner_cell(cell_scanner_t *q, float frequency, int N_id_2, cell_scanner_result_t *result) { int ret; cf_t *sf_buffer; lte_cell_t cell; int64_t sf_cnt; ue_sync_t ue_sync; ue_mib_t ue_mib; ue_dl_t ue_dl; lte_fft_t fft; chest_dl_t chest; uint32_t nframes_measure=0; uint32_t nof_trials = 0; uint32_t sfn = 0; // system frame number int n; uint8_t bch_payload[BCH_PAYLOAD_LEN], bch_payload_unpacked[BCH_PAYLOAD_LEN]; uint32_t sfn_offset; uint8_t data[1024]; uint8_t data_unpacked[1024]; bzero(result, sizeof(cell_scanner_result_t)); /* set receiver frequency */ cuhd_set_rx_freq(q->uhd, (double) frequency); cuhd_rx_wait_lo_locked(q->uhd); printf("Tunning receiver to %.3f MHz\n", (double ) frequency/1000000); cell_search_cfg_t cfg; cfg.nof_frames_total = q->config.cell_detect_max_frames; cfg.threshold = q->config.cell_detect_early_stop_threshold; ret = cuhd_search_and_decode_mib(q->uhd, &cfg, N_id_2, &cell); if (ret < 0) { fprintf(stderr, "Error searching cell\n"); exit(-1); } else if (ret == 0) { printf("Cell not found\n"); exit(0); } /* set sampling frequency */ int srate = lte_sampling_freq_hz(cell.nof_prb); if (srate != -1) { cuhd_set_rx_srate(q->uhd, (double) srate); } else { fprintf(stderr, "Invalid number of PRB %d\n", cell.nof_prb); return LIBLTE_ERROR; } INFO("Stopping UHD and flushing buffer...\n",0); cuhd_stop_rx_stream(q->uhd); cuhd_flush_buffer(q->uhd); if (ue_sync_init(&ue_sync, cell, cuhd_recv_wrapper, q->uhd)) { fprintf(stderr, "Error initiating ue_sync\n"); exit(-1); } if (ue_dl_init(&ue_dl, cell, 1234)) { fprintf(stderr, "Error initiating UE downlink processing module\n"); exit(-1); } if (ue_mib_init(&ue_mib, cell)) { fprintf(stderr, "Error initaiting UE MIB decoder\n"); exit(-1); } /* Configure downlink receiver for the SI-RNTI since will be the only one we'll use */ ue_dl_set_rnti(&ue_dl, SIRNTI); /* Initialize subframe counter */ sf_cnt = 0; if (lte_fft_init(&fft, cell.cp, cell.nof_prb)) { fprintf(stderr, "Error initiating FFT\n"); return -1; } if (chest_dl_init(&chest, cell)) { fprintf(stderr, "Error initiating channel estimator\n"); return -1; } int sf_re = SF_LEN_RE(cell.nof_prb, cell.cp); cf_t *sf_symbols = vec_malloc(sf_re * sizeof(cf_t)); cf_t *ce[MAX_PORTS]; for (int i=0;iuhd); memcpy(&result->phy_cell, &cell, sizeof(lte_cell_t)); chest_dl_t *chest_ptr = &ue_dl.chest; bool mib_decoded = false; bool sib_decoded = false; /* Main loop */ while (sf_cnt < q->config.measure_avg_nof_frames) { ret = ue_sync_get_buffer(&ue_sync, &sf_buffer); if (ret < 0) { fprintf(stderr, "Error calling ue_sync_work()\n"); } /* ue_sync_get_buffer returns 1 if successfully read 1 aligned subframe */ if (ret == 1) { if (!mib_decoded) { if (ue_sync_get_sfidx(&ue_sync) == 0) { pbch_decode_reset(&ue_mib.pbch); n = ue_mib_decode(&ue_mib, sf_buffer, bch_payload_unpacked, NULL, &sfn_offset); if (n < 0) { fprintf(stderr, "Error decoding UE MIB\n"); exit(-1); } else if (n == MIB_FOUND) { bit_unpack_vector(bch_payload_unpacked, bch_payload, BCH_PAYLOAD_LEN); bcch_bch_unpack(bch_payload, BCH_PAYLOAD_LEN, &cell, &sfn); printf("Decoded MIB. SFN: %d, offset: %d\n", sfn, sfn_offset); sfn = (sfn + sfn_offset)%1024; mib_decoded = true; } } } /* We are looking for SI Blocks, search only in appropiate places */ if (mib_decoded && !sib_decoded && (ue_sync_get_sfidx(&ue_sync) == 5 && (sfn%2)==0)) { n = ue_dl_decode_sib(&ue_dl, sf_buffer, data, ue_sync_get_sfidx(&ue_sync), ((int) ceilf((float)3*(((sfn)/2)%4)/2))%4); if (n < 0) { fprintf(stderr, "Error decoding UE DL\n");fflush(stdout); exit(-1); } else if (n == 0) { nof_trials++; } else { bit_unpack_vector(data, data_unpacked, n); void *dlsch_msg = bcch_dlsch_unpack(data_unpacked, n); if (dlsch_msg) { printf("\n");fflush(stdout); cell_access_info_t cell_info; bcch_dlsch_sib1_get_cell_access_info(dlsch_msg, &cell_info); printf("Decoded SIB1. Cell ID: 0x%x\n", cell_info.cell_id); result->cell_id = cell_info.cell_id; bcch_dlsch_fprint(dlsch_msg, stdout); sib_decoded = true; } } } else { chest_ptr = &chest; /* Run FFT for all subframe data */ lte_fft_run_sf(&fft, sf_buffer, sf_symbols); chest_dl_estimate(&chest, sf_symbols, ce, ue_sync_get_sfidx(&ue_sync)); } result->rssi = VEC_CMA(vec_avg_power_cf(sf_buffer,SF_LEN(lte_symbol_sz(cell.nof_prb))), result->rssi,nframes_measure); result->rsrq = VEC_EMA(chest_dl_get_rsrq(chest_ptr),result->rsrq,0.01); result->rsrp = VEC_CMA(chest_dl_get_rsrp(chest_ptr),result->rsrp,nframes_measure); result->snr = VEC_CMA(chest_dl_get_snr(chest_ptr),result->snr,nframes_measure); nframes_measure++; // Plot and Printf if ((nframes_measure%10) == 0) { printf("CFO: %+8.4f KHz, SFO: %+8.4f Khz, RSSI: %5.1f dBm, " "RSRP: %+5.1f dBm, RSRQ: %5.1f dB, SNR: %5.1f dB\r", ue_sync_get_cfo(&ue_sync)/1000, ue_sync_get_sfo(&ue_sync)/1000, 10*log10(result->rssi*1000)-B210_DEFAULT_GAIN_CORREC, 10*log10(result->rsrp*1000)-B210_DEFAULT_GAIN_CORREC, 10*log10(result->rsrq), 10*log10(result->snr)); if (verbose != VERBOSE_NONE) { printf("\n"); } } if (ue_sync_get_sfidx(&ue_sync) == 9) { sfn++; if (sfn == 1024) { sfn = 0; } } } else if (ret == 0) { printf("Finding PSS... Peak: %8.1f, FrameCnt: %d, State: %d\r", sync_get_peak_value(&ue_sync.sfind), ue_sync.frame_total_cnt, ue_sync.state); } sf_cnt++; } // Main loop // Correct RSRP and RSSI measurements result->rssi /= pow(10, 8); result->rsrp /= pow(10, 8); ue_sync_free(&ue_sync); return 0; }