/* * Copyright 2013-2019 Software Radio Systems Limited * * This file is part of srsLTE. * * srsLTE is free software: you can redistribute it and/or modify * it under the terms of the GNU Affero General Public License as * published by the Free Software Foundation, either version 3 of * the License, or (at your option) any later version. * * srsLTE is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Affero General Public License for more details. * * A copy of the GNU Affero General Public License can be found in * the LICENSE file in the top-level directory of this distribution * and at http://www.gnu.org/licenses/. * */ #include #include #include #include #include "srslte/srslte.h" #include "rf_soapy_imp.h" #include "rf_helper.h" #include #include #include #include #include #define HAVE_ASYNC_THREAD 1 #define USE_TX_MTU 0 #define SET_RF_BW 1 #define PRINT_RX_STATS 0 #define PRINT_TX_STATS 0 typedef struct { char *devname; SoapySDRKwargs args; SoapySDRDevice *device; SoapySDRRange *ranges; SoapySDRStream *rxStream; SoapySDRStream *txStream; bool tx_stream_active; bool rx_stream_active; srslte_rf_info_t info; double tx_rate; size_t rx_mtu, tx_mtu; size_t num_rx_channels; size_t num_tx_channels; srslte_rf_error_handler_t soapy_error_handler; bool async_thread_running; pthread_t async_thread; uint32_t num_time_errors; uint32_t num_lates; uint32_t num_overflows; uint32_t num_underflows; uint32_t num_other_errors; uint32_t num_stream_curruption; } rf_soapy_handler_t; cf_t zero_mem[64*1024]; static void log_overflow(rf_soapy_handler_t *h) { if (h->soapy_error_handler) { srslte_rf_error_t error; bzero(&error, sizeof(srslte_rf_error_t)); error.type = SRSLTE_RF_ERROR_OVERFLOW; h->soapy_error_handler(error); } else { h->num_overflows++; } } static void log_late(rf_soapy_handler_t *h, bool is_rx) { if (h->soapy_error_handler) { srslte_rf_error_t error; bzero(&error, sizeof(srslte_rf_error_t)); error.opt = is_rx?1:0; error.type = SRSLTE_RF_ERROR_LATE; h->soapy_error_handler(error); } else { h->num_lates++; } } static void log_underflow(rf_soapy_handler_t *h) { if (h->soapy_error_handler) { srslte_rf_error_t error; bzero(&error, sizeof(srslte_rf_error_t)); error.type = SRSLTE_RF_ERROR_UNDERFLOW; h->soapy_error_handler(error); } else { h->num_underflows++; } } #if HAVE_ASYNC_THREAD static void* async_thread(void *h) { rf_soapy_handler_t *handler = (rf_soapy_handler_t*) h; while(handler->async_thread_running) { int ret = 0; size_t chanMask = 0; int flags = 0; const long timeoutUs = 400000; // arbitrarily chosen long long timeNs; ret = SoapySDRDevice_readStreamStatus(handler->device, handler->txStream, &chanMask, &flags, &timeNs, timeoutUs); if (ret == SOAPY_SDR_TIME_ERROR) { // this is a late log_late(handler, false); } else if (ret == SOAPY_SDR_UNDERFLOW) { log_underflow(handler); } else if (ret == SOAPY_SDR_OVERFLOW) { log_overflow(handler); } else if (ret == SOAPY_SDR_TIMEOUT) { // this is a timeout of the readStreamStatus call, ignoring it .. } else if (ret == SOAPY_SDR_NOT_SUPPORTED) { // stopping async thread ERROR("Receiving async metadata not supported by device. Exiting thread.\n"); handler->async_thread_running = false; } else { ERROR("Error while receiving aync metadata: %s (%d), flags=%d, channel=%zu, timeNs=%lld\n", SoapySDR_errToStr(ret), ret, flags, chanMask, timeNs); handler->async_thread_running = false; } } return NULL; } #endif int soapy_error(void *h) { return 0; } void rf_soapy_get_freq_range(void *h) { // not supported } void rf_soapy_suppress_handler(const char *x) { // not supported } void rf_soapy_msg_handler(const char *msg) { // not supported } void rf_soapy_suppress_stdout(void *h) { // not supported } void rf_soapy_register_error_handler(void *h, srslte_rf_error_handler_t new_handler) { rf_soapy_handler_t *handler = (rf_soapy_handler_t*) h; handler->soapy_error_handler = new_handler; } char* rf_soapy_devname(void* h) { rf_soapy_handler_t *handler = (rf_soapy_handler_t*) h; return handler->devname; } bool rf_soapy_rx_wait_lo_locked(void *h) { rf_soapy_handler_t *handler = (rf_soapy_handler_t*)h; char *ret = SoapySDRDevice_readChannelSensor(handler->device, SOAPY_SDR_RX, 0, "lo_locked"); if (ret != NULL) { return (strcmp(ret, "true") == 0 ? true : false); } return true; } void rf_soapy_calibrate_tx(void *h) { rf_soapy_handler_t *handler = (rf_soapy_handler_t*) h; double actual_bw = SoapySDRDevice_getBandwidth(handler->device, SOAPY_SDR_TX, 0); char str_buf[25]; snprintf(str_buf, sizeof(str_buf), "%f", actual_bw); str_buf[24] = 0; if (SoapySDRDevice_writeSetting(handler->device, "CALIBRATE_TX", str_buf)) { printf("Error calibrating Rx\n"); } } int rf_soapy_start_rx_stream(void *h, bool now) { rf_soapy_handler_t *handler = (rf_soapy_handler_t*) h; if(handler->rx_stream_active == false){ if(SoapySDRDevice_activateStream(handler->device, handler->rxStream, SOAPY_SDR_HAS_TIME | SOAPY_SDR_END_BURST, 0, 0) != 0) return SRSLTE_ERROR; handler->rx_stream_active = true; } return SRSLTE_SUCCESS; } int rf_soapy_start_tx_stream(void *h) { rf_soapy_handler_t *handler = (rf_soapy_handler_t*) h; if(handler->tx_stream_active == false){ if(SoapySDRDevice_activateStream(handler->device, handler->txStream, 0, 0, 0) != 0) return SRSLTE_ERROR; handler->tx_stream_active = true; } return SRSLTE_SUCCESS; } int rf_soapy_stop_rx_stream(void *h) { rf_soapy_handler_t *handler = (rf_soapy_handler_t*) h; if (SoapySDRDevice_deactivateStream(handler->device, handler->rxStream, 0, 0) != 0) return SRSLTE_ERROR; handler->rx_stream_active = false; return SRSLTE_SUCCESS; } int rf_soapy_stop_tx_stream(void *h) { rf_soapy_handler_t *handler = (rf_soapy_handler_t*) h; if(SoapySDRDevice_deactivateStream(handler->device, handler->txStream, 0, 0) != 0) return SRSLTE_ERROR; handler->tx_stream_active = false; return SRSLTE_SUCCESS; } void rf_soapy_flush_buffer(void *h) { int n; cf_t tmp1[1024]; cf_t tmp2[1024]; void *data[2] = {tmp1, tmp2}; do { n = rf_soapy_recv_with_time_multi(h, data, 1024, 0, NULL, NULL); } while (n > 0); } bool rf_soapy_has_rssi(void *h) { // TODO: implement rf_soapy_has_rssi() return false; } float rf_soapy_get_rssi(void *h) { printf("TODO: implement rf_soapy_get_rssi()\n"); return 0.0; } int rf_soapy_open_multi(char* args, void** h, uint32_t num_requested_channels) { size_t length; SoapySDRKwargs* soapy_args = SoapySDRDevice_enumerate(NULL, &length); if (length == 0) { printf("No Soapy devices found.\n"); SoapySDRKwargsList_clear(soapy_args, length); return SRSLTE_ERROR; } char* devname = DEVNAME_NONE; for (size_t i = 0; i < length; i++) { printf("Soapy has found device #%d: ", (int)i); for (size_t j = 0; j < soapy_args[i].size; j++) { printf("%s=%s, ", soapy_args[i].keys[j], soapy_args[i].vals[j]); if(!strcmp(soapy_args[i].keys[j],"name") && !strcmp(soapy_args[i].vals[j], "LimeSDR-USB")){ devname = DEVNAME_LIME; } else if (!strcmp(soapy_args[i].keys[j],"name") && !strcmp(soapy_args[i].vals[j], "LimeSDR Mini")){ devname = DEVNAME_LIME_MINI; } } printf("\n"); } SoapySDRDevice *sdr = SoapySDRDevice_make(&(soapy_args[0])); if (sdr == NULL) { printf("Failed to create Soapy object\n"); return SRSLTE_ERROR; } SoapySDRKwargsList_clear(soapy_args, length); // create handler rf_soapy_handler_t *handler = (rf_soapy_handler_t*) malloc(sizeof(rf_soapy_handler_t)); bzero(handler, sizeof(rf_soapy_handler_t)); *h = handler; handler->device = sdr; handler->tx_stream_active = false; handler->rx_stream_active = false; handler->devname = devname; // Setup Rx streamer size_t num_available_channels = SoapySDRDevice_getNumChannels(handler->device, SOAPY_SDR_RX); if ((num_available_channels > 0) && (num_requested_channels > 0)) { handler->num_rx_channels = SRSLTE_MIN(num_available_channels, num_requested_channels); size_t rx_channels[handler->num_rx_channels]; for (int i = 0; i < handler->num_rx_channels; i++) { rx_channels[i] = i; } printf("Setting up Rx stream with %zd channel(s)\n", handler->num_rx_channels); if (SoapySDRDevice_setupStream(handler->device, &handler->rxStream, SOAPY_SDR_RX, SOAPY_SDR_CF32, rx_channels, handler->num_rx_channels, NULL) != 0) { printf("Rx setupStream fail: %s\n", SoapySDRDevice_lastError()); return SRSLTE_ERROR; } handler->rx_mtu = SoapySDRDevice_getStreamMTU(handler->device, handler->rxStream); } // Setup Tx streamer num_available_channels = SoapySDRDevice_getNumChannels(handler->device, SOAPY_SDR_TX); if ((num_available_channels > 0) && (num_requested_channels > 0)) { handler->num_tx_channels = SRSLTE_MIN(num_available_channels, num_requested_channels); size_t tx_channels[handler->num_tx_channels]; for (int i = 0; i < handler->num_tx_channels; i++) { tx_channels[i] = i; } printf("Setting up Tx stream with %zd channel(s)\n", handler->num_tx_channels); if (SoapySDRDevice_setupStream(handler->device, &handler->txStream, SOAPY_SDR_TX, SOAPY_SDR_CF32, tx_channels, handler->num_tx_channels, NULL) != 0) { printf("Tx setupStream fail: %s\n", SoapySDRDevice_lastError()); return SRSLTE_ERROR; } handler->tx_mtu = SoapySDRDevice_getStreamMTU(handler->device, handler->txStream); } // init rx/tx rate to lowest LTE rate to avoid decimation warnings rf_soapy_set_rx_srate(handler, 1.92e6); rf_soapy_set_tx_srate(handler, 1.92e6); // list device sensors size_t list_length; char** list; list = SoapySDRDevice_listSensors(handler->device, &list_length); printf("Available device sensors: \n"); for(int i = 0; i < list_length; i++) { printf(" - %s\n", list[i]); } // list channel sensors for (uint32_t i = 0; i < handler->num_rx_channels; ++i) { list = SoapySDRDevice_listChannelSensors(handler->device, SOAPY_SDR_RX, i, &list_length); printf("Available sensors for Rx channel %d: \n", i); for (int i = 0; i < list_length; i++) { printf(" - %s\n", list[i]); } } // Set static radio info SoapySDRRange tx_range = SoapySDRDevice_getGainRange(handler->device, SOAPY_SDR_TX, 0); SoapySDRRange rx_range = SoapySDRDevice_getGainRange(handler->device, SOAPY_SDR_RX, 0); handler->info.min_tx_gain = tx_range.minimum; handler->info.max_tx_gain = tx_range.maximum; handler->info.min_rx_gain = rx_range.minimum; handler->info.max_rx_gain = rx_range.maximum; // Check device arguments if (args) { // config file const char config_arg[] = "config="; char config_str[64] = {0}; char *config_ptr = strstr(args, config_arg); if (config_ptr) { copy_subdev_string(config_str, config_ptr + strlen(config_arg)); printf("Loading config file %s\n", config_str); SoapySDRDevice_writeSetting(handler->device, "LOAD_CONFIG", config_str); remove_substring(args, config_arg); remove_substring(args, config_str); } // rx antenna const char rx_ant_arg[] = "rxant="; char rx_ant_str[64] = {0}; char* rx_ant_ptr = strstr(args, rx_ant_arg); if (rx_ant_ptr) { copy_subdev_string(rx_ant_str, rx_ant_ptr + strlen(rx_ant_arg)); printf("Setting Rx antenna to %s\n", rx_ant_str); if (SoapySDRDevice_setAntenna(handler->device, SOAPY_SDR_RX, 0, rx_ant_str) != 0) { ERROR("Failed to set Rx antenna.\n"); } remove_substring(args, rx_ant_arg); remove_substring(args, rx_ant_str); } // tx antenna const char tx_ant_arg[] = "txant="; char tx_ant_str[64] = {0}; char* tx_ant_ptr = strstr(args, tx_ant_arg); if (tx_ant_ptr) { copy_subdev_string(tx_ant_str, tx_ant_ptr + strlen(tx_ant_arg)); printf("Setting Tx antenna to %s\n", tx_ant_str); if (SoapySDRDevice_setAntenna(handler->device, SOAPY_SDR_TX, 0, tx_ant_str) != 0) { ERROR("Failed to set Tx antenna.\n"); } remove_substring(args, tx_ant_arg); remove_substring(args, tx_ant_str); } // log level const char loglevel_arg[] = "loglevel="; char loglevel_str[64] = {0}; char *loglevel_ptr = strstr(args, loglevel_arg); if (loglevel_ptr) { copy_subdev_string(loglevel_str, loglevel_ptr + strlen(loglevel_arg)); if (strcmp(loglevel_str, "error") == 0) { SoapySDR_setLogLevel(SOAPY_SDR_ERROR); } remove_substring(args, loglevel_arg); remove_substring(args, loglevel_str); } } #if HAVE_ASYNC_THREAD bool start_async_thread = true; if (args) { if (strstr(args, "silent")) { REMOVE_SUBSTRING_WITHCOMAS(args, "silent"); start_async_thread = false; } } #endif // receive one subframe to allow for transceiver calibration if (strstr(devname, "lime")) { // set default tx gain and leave some time to calibrate tx rf_soapy_set_tx_gain(handler, 45); rf_soapy_set_rx_gain(handler, 35); cf_t dummy_buffer[1920]; cf_t *dummy_buffer_array[SRSLTE_MAX_PORTS]; for (int i = 0; i < SRSLTE_MAX_PORTS; i++) { dummy_buffer_array[i] = dummy_buffer; } rf_soapy_start_rx_stream(handler, true); rf_soapy_recv_with_time_multi(handler, (void**)dummy_buffer_array, 1920, false, NULL, NULL); rf_soapy_stop_rx_stream(handler); usleep(10000); } // list gains and AGC mode bool has_agc = SoapySDRDevice_hasGainMode(handler->device, SOAPY_SDR_RX, 0); list = SoapySDRDevice_listGains(handler->device, SOAPY_SDR_RX, 0, &list_length); printf("State of gain elements for Rx channel 0 (AGC %s):\n", has_agc ? "supported":"not supported"); for(int i = 0; i < list_length; i++) { printf(" - %s: %.2f dB\n", list[i], SoapySDRDevice_getGainElement(handler->device, SOAPY_SDR_RX, 0, list[i])); } has_agc = SoapySDRDevice_hasGainMode(handler->device, SOAPY_SDR_TX, 0); printf("State of gain elements for Tx channel 0 (AGC %s):\n", has_agc ? "supported":"not supported"); for(int i = 0; i < list_length; i++) { printf(" - %s: %.2f dB\n", list[i], SoapySDRDevice_getGainElement(handler->device, SOAPY_SDR_TX, 0, list[i])); } // print actual antenna configuration char *ant = SoapySDRDevice_getAntenna(handler->device, SOAPY_SDR_RX, 0); printf("Rx antenna set to %s\n", ant); ant = SoapySDRDevice_getAntenna(handler->device, SOAPY_SDR_TX, 0); printf("Tx antenna set to %s\n", ant); #if HAVE_ASYNC_THREAD if (start_async_thread) { // Start low priority thread to receive async commands handler->async_thread_running = true; if (pthread_create(&handler->async_thread, NULL, async_thread, handler)) { perror("pthread_create"); return -1; } } #endif return SRSLTE_SUCCESS; } int rf_soapy_open(char *args, void **h) { return rf_soapy_open_multi(args, h, 1); } int rf_soapy_close(void *h) { rf_soapy_handler_t *handler = (rf_soapy_handler_t*) h; #if HAVE_ASYNC_THREAD if (handler->async_thread_running) { handler->async_thread_running = false; pthread_join(handler->async_thread, NULL); } #endif if (handler->tx_stream_active) { rf_soapy_stop_tx_stream(handler); SoapySDRDevice_closeStream(handler->device, handler->txStream); } if (handler->rx_stream_active) { rf_soapy_stop_rx_stream(handler); SoapySDRDevice_closeStream(handler->device, handler->rxStream); } SoapySDRDevice_unmake(handler->device); free(handler); // print statistics if (handler->num_lates) printf("#lates=%d\n", handler->num_lates); if (handler->num_overflows) printf("#overflows=%d\n", handler->num_overflows); if (handler->num_underflows) printf("#underflows=%d\n", handler->num_underflows); if (handler->num_time_errors) printf("#time_errors=%d\n", handler->num_time_errors); if (handler->num_other_errors) printf("#other_errors=%d\n", handler->num_other_errors); return SRSLTE_SUCCESS; } void rf_soapy_set_master_clock_rate(void *h, double rate) { rf_soapy_handler_t *handler = (rf_soapy_handler_t*) h; if (SoapySDRDevice_setMasterClockRate(handler->device, rate) != 0) { printf("rf_soapy_set_master_clock_rate Rx fail: %s\n", SoapySDRDevice_lastError()); } printf("Set master clock rate to %.2f MHz\n", SoapySDRDevice_getMasterClockRate(handler->device)/1e6); } bool rf_soapy_is_master_clock_dynamic(void *h) { printf("TODO: implement rf_soapy_is_master_clock_dynamic()\n"); return false; } double rf_soapy_set_rx_srate(void *h, double rate) { rf_soapy_handler_t *handler = (rf_soapy_handler_t*) h; // Restart streaming, as the Lime seems to have problems reconfiguring the sample rate during streaming bool rx_stream_active = handler->rx_stream_active; if (rx_stream_active) { rf_soapy_stop_rx_stream(handler); } for (uint32_t i = 0; i < handler->num_rx_channels; i++) { if (SoapySDRDevice_setSampleRate(handler->device, SOAPY_SDR_RX, i, rate) != 0) { printf("setSampleRate Rx fail: %s\n", SoapySDRDevice_lastError()); return SRSLTE_ERROR; } #if SET_RF_BW // Set bandwidth close to current rate size_t bw_length; SoapySDRRange* bw_range = SoapySDRDevice_getBandwidthRange(handler->device, SOAPY_SDR_RX, 0, &bw_length); double bw = rate * 0.75; bw = SRSLTE_MIN(bw, bw_range->maximum); bw = SRSLTE_MAX(bw, bw_range->minimum); bw = SRSLTE_MAX(bw, 2.5e6); // For the Lime to avoid warnings if (SoapySDRDevice_setBandwidth(handler->device, SOAPY_SDR_RX, i, bw) != 0) { printf("setBandwidth fail: %s\n", SoapySDRDevice_lastError()); return SRSLTE_ERROR; } printf("Set Rx bandwidth to %.2f MHz\n", SoapySDRDevice_getBandwidth(handler->device, SOAPY_SDR_RX, i) / 1e6); #endif } if (rx_stream_active) { rf_soapy_start_rx_stream(handler, true); } // retrun sample rate of first channel return SoapySDRDevice_getSampleRate(handler->device, SOAPY_SDR_RX, 0); } double rf_soapy_set_tx_srate(void *h, double rate) { rf_soapy_handler_t *handler = (rf_soapy_handler_t*) h; // stop/start streaming during rate reconfiguration bool rx_stream_active = handler->rx_stream_active; if (handler->rx_stream_active) { rf_soapy_stop_rx_stream(handler); } for (uint32_t i = 0; i < handler->num_tx_channels; i++) { if (SoapySDRDevice_setSampleRate(handler->device, SOAPY_SDR_TX, i, rate) != 0) { printf("setSampleRate Tx fail: %s\n", SoapySDRDevice_lastError()); return SRSLTE_ERROR; } #if SET_RF_BW size_t bw_length; SoapySDRRange* bw_range = SoapySDRDevice_getBandwidthRange(handler->device, SOAPY_SDR_TX, i, &bw_length); // try to set the BW a bit narrower than sampling rate to prevent aliasing but make sure to stay within device // boundaries double bw = rate * 0.75; bw = SRSLTE_MAX(bw, bw_range->minimum); bw = SRSLTE_MIN(bw, bw_range->maximum); if (SoapySDRDevice_setBandwidth(handler->device, SOAPY_SDR_TX, i, bw) != 0) { printf("setBandwidth fail: %s\n", SoapySDRDevice_lastError()); return SRSLTE_ERROR; } printf("Set Tx bandwidth to %.2f MHz\n", SoapySDRDevice_getBandwidth(handler->device, SOAPY_SDR_TX, i) / 1e6); #endif } if (rx_stream_active) { rf_soapy_start_rx_stream(handler, true); } handler->tx_rate = SoapySDRDevice_getSampleRate(handler->device, SOAPY_SDR_TX, 0); return handler->tx_rate; } double rf_soapy_set_rx_gain(void *h, double gain) { rf_soapy_handler_t *handler = (rf_soapy_handler_t*) h; for (uint32_t i = 0; i < handler->num_rx_channels; i++) { if (SoapySDRDevice_setGain(handler->device, SOAPY_SDR_RX, i, gain) != 0) { printf("setGain fail: %s\n", SoapySDRDevice_lastError()); return SRSLTE_ERROR; } } return rf_soapy_get_rx_gain(h); } double rf_soapy_set_tx_gain(void *h, double gain) { rf_soapy_handler_t *handler = (rf_soapy_handler_t*) h; for (uint32_t i = 0; i < handler->num_tx_channels; i++) { if (SoapySDRDevice_setGain(handler->device, SOAPY_SDR_TX, i, gain) != 0) { printf("setGain fail: %s\n", SoapySDRDevice_lastError()); return SRSLTE_ERROR; } } return rf_soapy_get_tx_gain(h); } // Return gain of first channel double rf_soapy_get_rx_gain(void *h) { rf_soapy_handler_t *handler = (rf_soapy_handler_t*) h; return SoapySDRDevice_getGain(handler->device, SOAPY_SDR_RX, 0); } // Return gain of first channel double rf_soapy_get_tx_gain(void *h) { rf_soapy_handler_t *handler = (rf_soapy_handler_t*) h; return SoapySDRDevice_getGain(handler->device, SOAPY_SDR_TX, 0); } srslte_rf_info_t * rf_soapy_get_info(void *h) { srslte_rf_info_t *info = NULL; if (h) { rf_soapy_handler_t *handler = (rf_soapy_handler_t*) h; info = &handler->info; } return info; } double rf_soapy_set_rx_freq(void* h, uint32_t ch, double freq) { rf_soapy_handler_t *handler = (rf_soapy_handler_t*) h; for (uint32_t i = 0; i < handler->num_rx_channels; i++) { if (SoapySDRDevice_setFrequency(handler->device, SOAPY_SDR_RX, i, freq, NULL) != 0) { printf("setFrequency fail: %s\n", SoapySDRDevice_lastError()); return SRSLTE_ERROR; } } // wait until LO is locked rf_soapy_rx_wait_lo_locked(handler); // Return actual frequency for channel 0 return SoapySDRDevice_getFrequency(handler->device, SOAPY_SDR_RX, 0); } double rf_soapy_set_tx_freq(void* h, uint32_t ch, double freq) { rf_soapy_handler_t *handler = (rf_soapy_handler_t*) h; for (uint32_t i = 0; i < handler->num_tx_channels; i++) { if (SoapySDRDevice_setFrequency(handler->device, SOAPY_SDR_TX, i, freq, NULL) != 0) { printf("setFrequency fail: %s\n", SoapySDRDevice_lastError()); return SRSLTE_ERROR; } } return SoapySDRDevice_getFrequency(handler->device, SOAPY_SDR_TX, 0); } void rf_soapy_get_time(void *h, time_t *secs, double *frac_secs) { printf("Todo: implement rf_soapy_get_time()\n"); } //TODO: add multi-channel support int rf_soapy_recv_with_time_multi(void *h, void *data[SRSLTE_MAX_PORTS], uint32_t nsamples, bool blocking, time_t *secs, double *frac_secs) { rf_soapy_handler_t *handler = (rf_soapy_handler_t*) h; int flags = 0; // flags set by receive operation const long timeoutUs = 400000; // arbitrarily chosen int trials = 0; int ret = 0; long long timeNs; //timestamp for receive buffer int n = 0; #if PRINT_RX_STATS printf("rx: nsamples=%d rx_mtu=%zd\n", nsamples, handler->rx_mtu); #endif do { size_t rx_samples = SRSLTE_MIN(nsamples - n, handler->rx_mtu); #if PRINT_RX_STATS printf(" - rx_samples=%zd\n", rx_samples); #endif void* buffs_ptr[SRSLTE_MAX_PORTS]; for (int i = 0; i < SRSLTE_MAX_PORTS; i++) { cf_t *data_c = (cf_t*) data[i]; buffs_ptr[i] = &data_c[n]; } ret = SoapySDRDevice_readStream(handler->device, handler->rxStream, buffs_ptr, rx_samples, &flags, &timeNs, timeoutUs); if (ret == SOAPY_SDR_OVERFLOW || (ret > 0 && (flags & SOAPY_SDR_END_ABRUPT) != 0)) { log_overflow(handler); continue; } else if (ret == SOAPY_SDR_TIMEOUT) { log_late(handler, true); continue; } else if (ret < 0) { // unspecific error printf("SoapySDRDevice_readStream returned %d: %s\n", ret, SoapySDR_errToStr(ret)); handler->num_other_errors++; } // update rx time only for first segment if (secs != NULL && frac_secs != NULL && n == 0) { *secs = timeNs / 1e9; *frac_secs = (timeNs % 1000000000)/1e9; //printf("rx_time: secs=%lld, frac_secs=%lf timeNs=%llu\n", *secs, *frac_secs, timeNs); } #if PRINT_RX_STATS printf(" - rx: %d/%zd\n", ret, rx_samples); #endif n += ret; trials++; } while (n < nsamples && trials < 100); return n; } int rf_soapy_recv_with_time(void *h, void *data, uint32_t nsamples, bool blocking, time_t *secs, double *frac_secs) { return rf_soapy_recv_with_time_multi(h, &data, nsamples, blocking, secs, frac_secs); } int rf_soapy_send_timed(void* h, void* data, int nsamples, time_t secs, double frac_secs, bool has_time_spec, bool blocking, bool is_start_of_burst, bool is_end_of_burst) { void *_data[SRSLTE_MAX_PORTS]= {data, zero_mem, zero_mem, zero_mem}; return rf_soapy_send_timed_multi(h, _data, nsamples, secs, frac_secs, has_time_spec, blocking, is_start_of_burst, is_end_of_burst); } // Todo: Check correct handling of flags, use RF metrics API, fix timed transmissions int rf_soapy_send_timed_multi(void* h, void* data[SRSLTE_MAX_PORTS], int nsamples, time_t secs, double frac_secs, bool has_time_spec, bool blocking, bool is_start_of_burst, bool is_end_of_burst) { rf_soapy_handler_t *handler = (rf_soapy_handler_t *) h; int flags = 0; const long timeoutUs = 100000; // arbitrarily chosen long long timeNs = 0; int trials = 0; int ret = 0; int n = 0; #if PRINT_TX_STATS printf("tx: namples=%d, mtu=%zd\n", nsamples, handler->tx_mtu); #endif if (!handler->tx_stream_active) { rf_soapy_start_tx_stream(h); } // Convert initial tx time if (has_time_spec) { timeNs = (long long)secs * 1000000000; timeNs = timeNs + (frac_secs * 1000000000); } do { #if USE_TX_MTU size_t tx_samples = SRSLTE_MIN(nsamples - n, handler->tx_mtu); #else size_t tx_samples = nsamples; if (tx_samples > nsamples - n) { tx_samples = nsamples - n; } #endif // (re-)set stream flags flags = 0; if (is_start_of_burst && is_end_of_burst) { flags |= SOAPY_SDR_ONE_PACKET; } if (is_end_of_burst) { flags |= SOAPY_SDR_END_BURST; } // only set time flag for first tx if(has_time_spec && n == 0) { flags |= SOAPY_SDR_HAS_TIME; } #if PRINT_TX_STATS printf(" - tx_samples=%zd at timeNs=%llu flags=%d\n", tx_samples, timeNs, flags); #endif const void* buffs_ptr[SRSLTE_MAX_PORTS]; for (int i = 0; i < SRSLTE_MAX_PORTS; i++) { cf_t* data_c = data[i] ? data[i] : zero_mem; buffs_ptr[i] = &data_c[n]; } ret = SoapySDRDevice_writeStream(handler->device, handler->txStream, buffs_ptr, tx_samples, &flags, timeNs, timeoutUs); if (ret >= 0) { // Tx was ok #if PRINT_TX_STATS printf(" - tx: %d/%zd\n", ret, tx_samples); #endif // Advance tx time if (has_time_spec && ret < nsamples) { long long adv = SoapySDR_ticksToTimeNs(ret, handler->tx_rate); #if PRINT_TX_STATS printf(" - tx: timeNs_old=%llu, adv=%llu, timeNs_new=%llu, tx_rate=%f\n", timeNs, adv, timeNs+adv, handler->tx_rate); #endif timeNs += adv; } n += ret; } else if (ret < 0) { // An error has occured switch (ret) { case SOAPY_SDR_TIMEOUT: log_late(handler, false); printf("L"); break; case SOAPY_SDR_STREAM_ERROR: handler->num_stream_curruption++; printf("E"); break; case SOAPY_SDR_TIME_ERROR: handler->num_time_errors++; printf("T"); break; case SOAPY_SDR_UNDERFLOW: log_underflow(handler); printf("U"); break; default: ERROR("Error during writeStream\n"); exit(-1); return SRSLTE_ERROR; } } trials++; } while (n < nsamples && trials < 100); if (n != nsamples) { ERROR("Couldn't write all samples after %d trials.\n", trials); } return n; }