/** * * \section COPYRIGHT * * Copyright 2013-2014 The libLTE Developers. See the * COPYRIGHT file at the top-level directory of this distribution. * * \section LICENSE * * This file is part of the libLTE library. * * libLTE is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as * published by the Free Software Foundation, either version 3 of * the License, or (at your option) any later version. * * libLTE is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * A copy of the GNU Lesser General Public License can be found in * the LICENSE file in the top-level directory of this distribution * and at http://www.gnu.org/licenses/. * */ #include #include #include #include #include #include #include #include #include "prb_dl.h" #include "srslte/phy/phch/pdsch.h" #include "srslte/phy/common/phy_common.h" #include "srslte/phy/utils/bit.h" #include "srslte/phy/utils/debug.h" #include "srslte/phy/utils/vector.h" #define MAX_PDSCH_RE(cp) (2 * CP_NSYMB(cp) * 12) const static lte_mod_t modulations[4] = { LTE_BPSK, LTE_QPSK, LTE_QAM16, LTE_QAM64 }; //#define DEBUG_IDX #ifdef DEBUG_IDX cf_t *offset_original=NULL; extern int indices[100000]; extern int indices_ptr; #endif int pdsch_cp(pdsch_t *q, cf_t *input, cf_t *output, ra_dl_alloc_t *prb_alloc, uint32_t nsubframe, bool put) { uint32_t s, n, l, lp, lstart, lend, nof_refs; bool is_pbch, is_sss; cf_t *in_ptr = input, *out_ptr = output; uint32_t offset = 0; INFO("%s %d RE from %d PRB\n", put ? "Putting" : "Getting", prb_alloc->re_sf[nsubframe], prb_alloc->slot[0].nof_prb); #ifdef DEBUG_IDX indices_ptr = 0; if (put) { offset_original = output; } else { offset_original = input; } #endif if (q->cell.nof_ports == 1) { nof_refs = 2; } else { nof_refs = 4; } for (s = 0; s < 2; s++) { for (l = 0; l < CP_NSYMB(q->cell.cp); l++) { for (n = 0; n < q->cell.nof_prb; n++) { // If this PRB is assigned if (prb_alloc->slot[s].prb_idx[n]) { if (s == 0) { lstart = prb_alloc->lstart; } else { lstart = 0; } lend = CP_NSYMB(q->cell.cp); is_pbch = is_sss = false; // Skip PSS/SSS signals if (s == 0 && (nsubframe == 0 || nsubframe == 5)) { if (n >= q->cell.nof_prb / 2 - 3 && n < q->cell.nof_prb / 2 + 3) { lend = CP_NSYMB(q->cell.cp) - 2; is_sss = true; } } // Skip PBCH if (s == 1 && nsubframe == 0) { if (n >= q->cell.nof_prb / 2 - 3 && n < q->cell.nof_prb / 2 + 3) { lstart = 4; is_pbch = true; } } lp = l + s * CP_NSYMB(q->cell.cp); if (put) { out_ptr = &output[(lp * q->cell.nof_prb + n) * RE_X_RB]; } else { in_ptr = &input[(lp * q->cell.nof_prb + n) * RE_X_RB]; } // This is a symbol in a normal PRB with or without references if (l >= lstart && l < lend) { if (SYMBOL_HAS_REF(l, q->cell.cp, q->cell.nof_ports)) { if (nof_refs == 2 && l != 0) { offset = q->cell.id % 3 + 3; } else { offset = q->cell.id % 3; } prb_cp_ref(&in_ptr, &out_ptr, offset, nof_refs, nof_refs, put); } else { prb_cp(&in_ptr, &out_ptr, 1); } } // This is a symbol in a PRB with PBCH or Synch signals (SS). // If the number or total PRB is odd, half of the the PBCH or SS will fall into the symbol if ((q->cell.nof_prb % 2) && ((is_pbch && l < lstart) || (is_sss && l >= lend))) { if (n == q->cell.nof_prb / 2 - 3) { if (SYMBOL_HAS_REF(l, q->cell.cp, q->cell.nof_ports)) { prb_cp_ref(&in_ptr, &out_ptr, offset, nof_refs, nof_refs/2, put); } else { prb_cp_half(&in_ptr, &out_ptr, 1); } } else if (n == q->cell.nof_prb / 2 + 3) { if (put) { out_ptr += 6; } else { in_ptr += 6; } if (SYMBOL_HAS_REF(l, q->cell.cp, q->cell.nof_ports)) { prb_cp_ref(&in_ptr, &out_ptr, offset, nof_refs, nof_refs/2, put); } else { prb_cp_half(&in_ptr, &out_ptr, 1); } } } } } } } int r; if (put) { r = abs((int) (input - in_ptr)); } else { r = abs((int) (output - out_ptr)); } return r; } /** * Puts PDSCH in slot number 1 * * Returns the number of symbols written to sf_symbols * * 36.211 10.3 section 6.3.5 */ int pdsch_put(pdsch_t *q, cf_t *pdsch_symbols, cf_t *sf_symbols, ra_dl_alloc_t *prb_alloc, uint32_t subframe) { return pdsch_cp(q, pdsch_symbols, sf_symbols, prb_alloc, subframe, true); } /** * Extracts PDSCH from slot number 1 * * Returns the number of symbols written to PDSCH * * 36.211 10.3 section 6.3.5 */ int pdsch_get(pdsch_t *q, cf_t *sf_symbols, cf_t *pdsch_symbols, ra_dl_alloc_t *prb_alloc, uint32_t subframe) { return pdsch_cp(q, sf_symbols, pdsch_symbols, prb_alloc, subframe, false); } /** Initializes the PDCCH transmitter and receiver */ int pdsch_init(pdsch_t *q, lte_cell_t cell) { int ret = LIBLTE_ERROR_INVALID_INPUTS; int i; if (q != NULL && lte_cell_isvalid(&cell)) { bzero(q, sizeof(pdsch_t)); ret = LIBLTE_ERROR; q->cell = cell; q->max_re = q->cell.nof_prb * MAX_PDSCH_RE(q->cell.cp); INFO("Init PDSCH: %d ports %d PRBs, max_symbols: %d\n", q->cell.nof_ports, q->cell.nof_prb, q->max_re); if (precoding_init(&q->precoding, SF_LEN_RE(cell.nof_prb, cell.cp))) { fprintf(stderr, "Error initializing precoding\n"); goto clean; } for (i = 0; i < 4; i++) { if (modem_table_lte(&q->mod[i], modulations[i], true)) { goto clean; } } demod_soft_init(&q->demod, q->max_re); demod_soft_alg_set(&q->demod, APPROX); sch_init(&q->dl_sch); q->rnti_is_set = false; // Allocate floats for reception (LLRs) q->pdsch_e = vec_malloc(sizeof(float) * q->max_re * lte_mod_bits_x_symbol(LTE_QAM64)); if (!q->pdsch_e) { goto clean; } q->pdsch_d = vec_malloc(sizeof(cf_t) * q->max_re); if (!q->pdsch_d) { goto clean; } for (i = 0; i < q->cell.nof_ports; i++) { q->ce[i] = vec_malloc(sizeof(cf_t) * q->max_re); if (!q->ce[i]) { goto clean; } q->pdsch_x[i] = vec_malloc(sizeof(cf_t) * q->max_re); if (!q->pdsch_x[i]) { goto clean; } q->pdsch_symbols[i] = vec_malloc(sizeof(cf_t) * q->max_re); if (!q->pdsch_symbols[i]) { goto clean; } } ret = LIBLTE_SUCCESS; } clean: if (ret == LIBLTE_ERROR) { pdsch_free(q); } return ret; } void pdsch_free(pdsch_t *q) { int i; if (q->pdsch_e) { free(q->pdsch_e); } if (q->pdsch_d) { free(q->pdsch_d); } for (i = 0; i < q->cell.nof_ports; i++) { if (q->ce[i]) { free(q->ce[i]); } if (q->pdsch_x[i]) { free(q->pdsch_x[i]); } if (q->pdsch_symbols[i]) { free(q->pdsch_symbols[i]); } } for (i = 0; i < NSUBFRAMES_X_FRAME; i++) { sequence_free(&q->seq_pdsch[i]); } for (i = 0; i < 4; i++) { modem_table_free(&q->mod[i]); } demod_soft_free(&q->demod); precoding_free(&q->precoding); sch_free(&q->dl_sch); bzero(q, sizeof(pdsch_t)); } /* Precalculate the PUSCH scramble sequences for a given RNTI. This function takes a while * to execute, so shall be called once the final C-RNTI has been allocated for the session. * For the connection procedure, use pusch_encode_rnti() or pusch_decode_rnti() functions */ int pdsch_set_rnti(pdsch_t *q, uint16_t rnti) { uint32_t i; for (i = 0; i < NSUBFRAMES_X_FRAME; i++) { if (sequence_pdsch(&q->seq_pdsch[i], rnti, 0, 2 * i, q->cell.id, q->max_re * lte_mod_bits_x_symbol(LTE_QAM64))) { return LIBLTE_ERROR; } } q->rnti_is_set = true; q->rnti = rnti; return LIBLTE_SUCCESS; } int pdsch_decode(pdsch_t *q, harq_t *harq, cf_t *sf_symbols, cf_t *ce[MAX_PORTS], float noise_estimate, uint8_t *data) { if (q != NULL && sf_symbols != NULL && data != NULL && harq != NULL) { if (q->rnti_is_set) { return pdsch_decode_rnti(q, harq, sf_symbols, ce, noise_estimate, q->rnti, data); } else { fprintf(stderr, "Must call pdsch_set_rnti() before calling pdsch_decode()\n"); return LIBLTE_ERROR; } } else { return LIBLTE_ERROR_INVALID_INPUTS; } } /** Decodes the PDSCH from the received symbols */ int pdsch_decode_rnti(pdsch_t *q, harq_t *harq, cf_t *sf_symbols, cf_t *ce[MAX_PORTS], float noise_estimate, uint16_t rnti, uint8_t *data) { /* Set pointers for layermapping & precoding */ uint32_t i, n; cf_t *x[MAX_LAYERS]; if (q != NULL && sf_symbols != NULL && data != NULL && harq != NULL) { INFO("Decoding PDSCH SF: %d, Mod %s, TBS: %d, NofSymbols: %d, NofBitsE: %d, rv_idx: %d\n", harq->sf_idx, lte_mod_string(harq->mcs.mod), harq->mcs.tbs, harq->nof_re, harq->nof_bits, harq->rv); /* number of layers equals number of ports */ for (i = 0; i < q->cell.nof_ports; i++) { x[i] = q->pdsch_x[i]; } memset(&x[q->cell.nof_ports], 0, sizeof(cf_t*) * (MAX_LAYERS - q->cell.nof_ports)); /* extract symbols */ n = pdsch_get(q, sf_symbols, q->pdsch_symbols[0], &harq->dl_alloc, harq->sf_idx); if (n != harq->nof_re) { fprintf(stderr, "Error expecting %d symbols but got %d\n", harq->nof_re, n); return LIBLTE_ERROR; } /* extract channel estimates */ for (i = 0; i < q->cell.nof_ports; i++) { n = pdsch_get(q, ce[i], q->ce[i], &harq->dl_alloc, harq->sf_idx); if (n != harq->nof_re) { fprintf(stderr, "Error expecting %d symbols but got %d\n", harq->nof_re, n); return LIBLTE_ERROR; } } /* TODO: only diversity is supported */ if (q->cell.nof_ports == 1) { /* no need for layer demapping */ predecoding_single(&q->precoding, q->pdsch_symbols[0], q->ce[0], q->pdsch_d, harq->nof_re, noise_estimate); } else { predecoding_diversity(&q->precoding, q->pdsch_symbols[0], q->ce, x, q->cell.nof_ports, harq->nof_re, noise_estimate); layerdemap_diversity(x, q->pdsch_d, q->cell.nof_ports, harq->nof_re / q->cell.nof_ports); } /* demodulate symbols * The MAX-log-MAP algorithm used in turbo decoding is unsensitive to SNR estimation, * thus we don't need tot set it in the LLRs normalization */ demod_soft_sigma_set(&q->demod, sqrt(0.5)); demod_soft_table_set(&q->demod, &q->mod[harq->mcs.mod]); demod_soft_demodulate(&q->demod, q->pdsch_d, q->pdsch_e, harq->nof_re); /* descramble */ if (rnti != q->rnti) { sequence_t seq; if (sequence_pdsch(&seq, rnti, 0, 2 * harq->sf_idx, q->cell.id, harq->nof_bits)) { return LIBLTE_ERROR; } scrambling_f_offset(&seq, q->pdsch_e, 0, harq->nof_bits); sequence_free(&seq); } else { scrambling_f_offset(&q->seq_pdsch[harq->sf_idx], q->pdsch_e, 0, harq->nof_bits); } return dlsch_decode(&q->dl_sch, harq, q->pdsch_e, data); } else { return LIBLTE_ERROR_INVALID_INPUTS; } } int pdsch_encode(pdsch_t *q, harq_t *harq, uint8_t *data, cf_t *sf_symbols[MAX_PORTS]) { if (q != NULL && data != NULL && harq != NULL) { if (q->rnti_is_set) { return pdsch_encode_rnti(q, harq, data, q->rnti, sf_symbols); } else { fprintf(stderr, "Must call pdsch_set_rnti() to set the encoder/decoder RNTI\n"); return LIBLTE_ERROR; } } else { return LIBLTE_ERROR_INVALID_INPUTS; } } /** Converts the PDSCH data bits to symbols mapped to the slot ready for transmission */ int pdsch_encode_rnti(pdsch_t *q, harq_t *harq, uint8_t *data, uint16_t rnti, cf_t *sf_symbols[MAX_PORTS]) { int i; /* Set pointers for layermapping & precoding */ cf_t *x[MAX_LAYERS]; int ret = LIBLTE_ERROR_INVALID_INPUTS; if (q != NULL && data != NULL && harq != NULL) { for (i=0;icell.nof_ports;i++) { if (sf_symbols[i] == NULL) { return LIBLTE_ERROR_INVALID_INPUTS; } } if (harq->mcs.tbs == 0) { return LIBLTE_ERROR_INVALID_INPUTS; } if (harq->mcs.tbs > harq->nof_bits) { fprintf(stderr, "Invalid code rate %.2f\n", (float) harq->mcs.tbs / harq->nof_bits); return LIBLTE_ERROR_INVALID_INPUTS; } if (harq->nof_re > q->max_re) { fprintf(stderr, "Error too many RE per subframe (%d). PDSCH configured for %d RE (%d PRB)\n", harq->nof_re, q->max_re, q->cell.nof_prb); return LIBLTE_ERROR_INVALID_INPUTS; } INFO("Encoding PDSCH SF: %d, Mod %s, NofBits: %d, NofSymbols: %d, NofBitsE: %d, rv_idx: %d\n", harq->sf_idx, lte_mod_string(harq->mcs.mod), harq->mcs.tbs, harq->nof_re, harq->nof_bits, harq->rv); /* number of layers equals number of ports */ for (i = 0; i < q->cell.nof_ports; i++) { x[i] = q->pdsch_x[i]; } memset(&x[q->cell.nof_ports], 0, sizeof(cf_t*) * (MAX_LAYERS - q->cell.nof_ports)); if (dlsch_encode(&q->dl_sch, harq, data, q->pdsch_e)) { fprintf(stderr, "Error encoding TB\n"); return LIBLTE_ERROR; } if (rnti != q->rnti) { sequence_t seq; if (sequence_pdsch(&seq, rnti, 0, 2 * harq->sf_idx, q->cell.id, harq->nof_bits)) { return LIBLTE_ERROR; } scrambling_b_offset(&seq, (uint8_t*) q->pdsch_e, 0, harq->nof_bits); sequence_free(&seq); } else { scrambling_b_offset(&q->seq_pdsch[harq->sf_idx], (uint8_t*) q->pdsch_e, 0, harq->nof_bits); } mod_modulate(&q->mod[harq->mcs.mod], (uint8_t*) q->pdsch_e, q->pdsch_d, harq->nof_bits); /* TODO: only diversity supported */ if (q->cell.nof_ports > 1) { layermap_diversity(q->pdsch_d, x, q->cell.nof_ports, harq->nof_re); precoding_diversity(&q->precoding, x, q->pdsch_symbols, q->cell.nof_ports, harq->nof_re / q->cell.nof_ports); } else { memcpy(q->pdsch_symbols[0], q->pdsch_d, harq->nof_re * sizeof(cf_t)); } /* mapping to resource elements */ for (i = 0; i < q->cell.nof_ports; i++) { pdsch_put(q, q->pdsch_symbols[i], sf_symbols[i], &harq->dl_alloc, harq->sf_idx); } ret = LIBLTE_SUCCESS; } return ret; }