/** * * \section COPYRIGHT * * Copyright 2013-2014 The libLTE Developers. See the * COPYRIGHT file at the top-level directory of this distribution. * * \section LICENSE * * This file is part of the libLTE library. * * libLTE is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as * published by the Free Software Foundation, either version 3 of * the License, or (at your option) any later version. * * libLTE is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * A copy of the GNU Lesser General Public License can be found in * the LICENSE file in the top-level directory of this distribution * and at http://www.gnu.org/licenses/. * */ #include #include #include #include #include #include "srslte/phy/common/phy_common.h" #include "srslte/phy/mimo/precoding.h" #include "srslte/phy/utils/vector.h" /************************************************ * * RECEIVER SIDE FUNCTIONS * **************************************************/ int precoding_init(precoding_t *q, uint32_t max_frame_len) { if (q) { bzero(q, sizeof(precoding_t)); q->h_mod = vec_malloc(sizeof(cf_t) * max_frame_len); if (!q->h_mod) { perror("malloc"); goto clean_exit; } q->tmp1 = vec_malloc(sizeof(cf_t) * max_frame_len); if (!q->tmp1) { perror("malloc"); goto clean_exit; } q->tmp2 = vec_malloc(sizeof(cf_t) * max_frame_len); if (!q->tmp2) { perror("malloc"); goto clean_exit; } q->tmp3 = vec_malloc(sizeof(cf_t) * max_frame_len); if (!q->tmp3) { perror("malloc"); goto clean_exit; } q->y_mod = vec_malloc(sizeof(float) * max_frame_len); if (!q->y_mod) { perror("malloc"); goto clean_exit; } q->z_real = vec_malloc(sizeof(float) * max_frame_len); if (!q->z_real) { perror("malloc"); goto clean_exit; } q->z_imag = vec_malloc(sizeof(float) * max_frame_len); if (!q->z_imag) { perror("malloc"); goto clean_exit; } q->max_frame_len = max_frame_len; return LIBLTE_SUCCESS; } else { return LIBLTE_ERROR_INVALID_INPUTS; } clean_exit: precoding_free(q); return LIBLTE_ERROR; } void precoding_free(precoding_t *q) { if (q->tmp1) { free(q->tmp1); } if (q->tmp2) { free(q->tmp2); } if (q->tmp3) { free(q->tmp3); } if (q->h_mod) { free(q->h_mod); } if (q->y_mod) { free(q->y_mod); } if (q->z_real) { free(q->z_real); } if (q->z_imag) { free(q->z_imag); } bzero(q, sizeof(precoding_t)); } /* ZF/MMSE SISO equalizer x=y(h'h+no)^(-1)h' (ZF if n0=0.0)*/ int predecoding_single(precoding_t *q, cf_t *y, cf_t *h, cf_t *x, int nof_symbols, float noise_estimate) { if (nof_symbols <= q->max_frame_len) { // h'h vec_abs_square_cf(h, q->y_mod, nof_symbols); if (noise_estimate > 0.0) { // (h'h + n0) vec_sc_add_fff(q->y_mod, noise_estimate, q->y_mod, nof_symbols); } // y*h' vec_prod_conj_ccc(y, h, x, nof_symbols); // divide by (h'h+no) vec_div_cfc(x,q->y_mod,x,q->z_real,q->z_imag, nof_symbols); return nof_symbols; } else { return LIBLTE_ERROR; } } /* ZF/MMSE STBC equalizer x=y(H'H+n0·I)^(-1)H' (ZF is n0=0.0) */ int predecoding_diversity(precoding_t *q, cf_t *y, cf_t *h[MAX_PORTS], cf_t *x[MAX_LAYERS], int nof_ports, int nof_symbols, float noise_estimate) { int i; if (nof_ports == 2) { #define new #ifdef new // reuse buffers cf_t *r0 = q->tmp3; cf_t *r1 = &q->tmp3[nof_symbols/2]; cf_t *h0 = q->h_mod; cf_t *h1 = &q->h_mod[nof_symbols/2]; float *modhh = q->y_mod; float *modh0 = q->z_real; float *modh1 = q->z_imag; // prepare buffers for (i=0;i 0.0) { // (H'H + n0) //vec_sc_add_fff(modhh, noise_estimate, modhh, nof_symbols/2); //} vec_sc_prod_fff(modhh, 1/sqrt(2), modhh, nof_symbols/2); // x[0] = r0·h0*/(|h0|+|h1|)+r1*·h1/(|h0|+|h1|) vec_prod_conj_ccc(r0,h0,q->tmp1, nof_symbols/2); vec_prod_conj_ccc(h1,r1,q->tmp2, nof_symbols/2); vec_sum_ccc(q->tmp1, q->tmp2, x[0], nof_symbols/2); vec_div_cfc(x[0], modhh, x[0], q->z_real, q->z_imag, nof_symbols/2); // x[1] = r1·h0*/(|h0|+|h1|)-r0*·h1/(|h0|+|h1|) vec_prod_conj_ccc(r1,h0,q->tmp1, nof_symbols/2); vec_prod_conj_ccc(h1,r0,q->tmp2, nof_symbols/2); vec_sub_ccc(q->tmp1, q->tmp2, x[1], nof_symbols/2); vec_div_cfc(x[1], modhh, x[1], q->z_real, q->z_imag, nof_symbols/2); #else cf_t h0, h1, h2, h3, r0, r1, r2, r3; float hh, hh02, hh13; for (i = 0; i < nof_symbols / 2; i++) { h0 = h[0][2 * i]; h1 = h[1][2 * i]; hh = crealf(h0) * crealf(h0) + cimagf(h0) * cimagf(h0) + crealf(h1) * crealf(h1) + cimagf(h1) * cimagf(h1) + noise_estimate; r0 = y[2 * i]; r1 = y[2 * i + 1]; if (hh == 0) { hh = 1e-2; } x[0][i] = (conjf(h0) * r0 + h1 * conjf(r1)) / hh * sqrt(2); x[1][i] = (-h1 * conj(r0) + conj(h0) * r1) / hh * sqrt(2); } #endif return i; } else if (nof_ports == 4) { cf_t h0, h1, h2, h3, r0, r1, r2, r3; float hh02, hh13; int m_ap = (nof_symbols % 4) ? ((nof_symbols - 2) / 4) : nof_symbols / 4; for (i = 0; i < m_ap; i++) { h0 = h[0][4 * i]; h1 = h[1][4 * i + 2]; h2 = h[2][4 * i]; h3 = h[3][4 * i + 2]; hh02 = crealf(h0) * crealf(h0) + cimagf(h0) * cimagf(h0) + crealf(h2) * crealf(h2) + cimagf(h2) * cimagf(h2); hh13 = crealf(h1) * crealf(h1) + cimagf(h1) * cimagf(h1) + crealf(h3) * crealf(h3) + cimagf(h3) * cimagf(h3); r0 = y[4 * i]; r1 = y[4 * i + 1]; r2 = y[4 * i + 2]; r3 = y[4 * i + 3]; x[0][i] = (conjf(h0) * r0 + h2 * conjf(r1)) / hh02 * sqrt(2); x[1][i] = (-h2 * conjf(r0) + conjf(h0) * r1) / hh02 * sqrt(2); x[2][i] = (conjf(h1) * r2 + h3 * conjf(r3)) / hh13 * sqrt(2); x[3][i] = (-h3 * conjf(r2) + conjf(h1) * r3) / hh13 * sqrt(2); } return i; } else { fprintf(stderr, "Number of ports must be 2 or 4 for transmit diversity (nof_ports=%d)\n", nof_ports); return -1; } } /* 36.211 v10.3.0 Section 6.3.4 */ int predecoding_type(precoding_t *q, cf_t *y, cf_t *h[MAX_PORTS], cf_t *x[MAX_LAYERS], int nof_ports, int nof_layers, int nof_symbols, lte_mimo_type_t type, float noise_estimate) { if (nof_ports > MAX_PORTS) { fprintf(stderr, "Maximum number of ports is %d (nof_ports=%d)\n", MAX_PORTS, nof_ports); return -1; } if (nof_layers > MAX_LAYERS) { fprintf(stderr, "Maximum number of layers is %d (nof_layers=%d)\n", MAX_LAYERS, nof_layers); return -1; } switch (type) { case SINGLE_ANTENNA: if (nof_ports == 1 && nof_layers == 1) { return predecoding_single(q, y, h[0], x[0], nof_symbols, noise_estimate); } else { fprintf(stderr, "Number of ports and layers must be 1 for transmission on single antenna ports\n"); return -1; } break; case TX_DIVERSITY: if (nof_ports == nof_layers) { return predecoding_diversity(q, y, h, x, nof_ports, nof_symbols, noise_estimate); } else { fprintf(stderr, "Error number of layers must equal number of ports in transmit diversity\n"); return -1; } break; case SPATIAL_MULTIPLEX: fprintf(stderr, "Spatial multiplexing not supported\n"); return -1; } return 0; } /************************************************ * * TRANSMITTER SIDE FUNCTIONS * **************************************************/ int precoding_single(precoding_t *q, cf_t *x, cf_t *y, int nof_symbols) { memcpy(y, x, nof_symbols * sizeof(cf_t)); return nof_symbols; } int precoding_diversity(precoding_t *q, cf_t *x[MAX_LAYERS], cf_t *y[MAX_PORTS], int nof_ports, int nof_symbols) { int i; if (nof_ports == 2) { for (i = 0; i < nof_symbols; i++) { y[0][2 * i] = x[0][i]; y[1][2 * i] = -conjf(x[1][i]); y[0][2 * i + 1] = x[1][i]; y[1][2 * i + 1] = conjf(x[0][i]); } // normalize vec_sc_prod_cfc(y[0], 1.0/sqrtf(2), y[0], 2*nof_symbols); vec_sc_prod_cfc(y[1], 1.0/sqrtf(2), y[1], 2*nof_symbols); return 2 * i; } else if (nof_ports == 4) { //int m_ap = (nof_symbols%4)?(nof_symbols*4-2):nof_symbols*4; int m_ap = 4 * nof_symbols; for (i = 0; i < m_ap / 4; i++) { y[0][4 * i] = x[0][i] / sqrtf(2); y[1][4 * i] = 0; y[2][4 * i] = -conjf(x[1][i]) / sqrtf(2); y[3][4 * i] = 0; y[0][4 * i + 1] = x[1][i] / sqrtf(2); y[1][4 * i + 1] = 0; y[2][4 * i + 1] = conjf(x[0][i]) / sqrtf(2); y[3][4 * i + 1] = 0; y[0][4 * i + 2] = 0; y[1][4 * i + 2] = x[2][i] / sqrtf(2); y[2][4 * i + 2] = 0; y[3][4 * i + 2] = -conjf(x[3][i]) / sqrtf(2); y[0][4 * i + 3] = 0; y[1][4 * i + 3] = x[3][i] / sqrtf(2); y[2][4 * i + 3] = 0; y[3][4 * i + 3] = conjf(x[2][i]) / sqrtf(2); } return 4 * i; } else { fprintf(stderr, "Number of ports must be 2 or 4 for transmit diversity (nof_ports=%d)\n", nof_ports); return -1; } } /* 36.211 v10.3.0 Section 6.3.4 */ int precoding_type(precoding_t *q, cf_t *x[MAX_LAYERS], cf_t *y[MAX_PORTS], int nof_layers, int nof_ports, int nof_symbols, lte_mimo_type_t type) { if (nof_ports > MAX_PORTS) { fprintf(stderr, "Maximum number of ports is %d (nof_ports=%d)\n", MAX_PORTS, nof_ports); return -1; } if (nof_layers > MAX_LAYERS) { fprintf(stderr, "Maximum number of layers is %d (nof_layers=%d)\n", MAX_LAYERS, nof_layers); return -1; } switch (type) { case SINGLE_ANTENNA: if (nof_ports == 1 && nof_layers == 1) { return precoding_single(q, x[0], y[0], nof_symbols); } else { fprintf(stderr, "Number of ports and layers must be 1 for transmission on single antenna ports\n"); return -1; } break; case TX_DIVERSITY: if (nof_ports == nof_layers) { return precoding_diversity(q, x, y, nof_ports, nof_symbols); } else { fprintf(stderr, "Error number of layers must equal number of ports in transmit diversity\n"); return -1; } case SPATIAL_MULTIPLEX: fprintf(stderr, "Spatial multiplexing not supported\n"); return -1; } return 0; }