/** * * \section COPYRIGHT * * Copyright 2013-2014 The libLTE Developers. See the * COPYRIGHT file at the top-level directory of this distribution. * * \section LICENSE * * This file is part of the libLTE library. * * libLTE is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as * published by the Free Software Foundation, either version 3 of * the License, or (at your option) any later version. * * libLTE is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * A copy of the GNU Lesser General Public License can be found in * the LICENSE file in the top-level directory of this distribution * and at http://www.gnu.org/licenses/. * */ #include #include #include #include #include #include "srslte/phy/common/phy_common.h" #include "srslte/phy/utils/dft.h" #include "srslte/phy/common/fft.h" #include "srslte/phy/utils/debug.h" #include "srslte/phy/utils/vector.h" int lte_fft_init_(lte_fft_t *q, lte_cp_t cp, uint32_t nof_prb, dft_dir_t dir) { int symbol_sz = lte_symbol_sz(nof_prb); if (symbol_sz < 0) { fprintf(stderr, "Error: Invalid nof_prb=%d\n", nof_prb); return -1; } if (dft_plan_c(&q->fft_plan, symbol_sz, dir)) { fprintf(stderr, "Error: Creating DFT plan\n"); return -1; } q->tmp = malloc((uint32_t) symbol_sz * sizeof(cf_t)); if (!q->tmp) { perror("malloc"); return -1; } dft_plan_set_mirror(&q->fft_plan, true); dft_plan_set_dc(&q->fft_plan, true); q->symbol_sz = (uint32_t) symbol_sz; q->nof_symbols = CP_NSYMB(cp); q->cp = cp; q->freq_shift = false; q->nof_re = nof_prb * RE_X_RB; q->nof_guards = ((symbol_sz - q->nof_re) / 2); q->slot_sz = SLOT_LEN(symbol_sz); DEBUG("Init %s symbol_sz=%d, nof_symbols=%d, cp=%s, nof_re=%d, nof_guards=%d\n", dir==FORWARD?"FFT":"iFFT", q->symbol_sz, q->nof_symbols, q->cp==CPNORM?"Normal":"Extended", q->nof_re, q->nof_guards); return LIBLTE_SUCCESS; } void lte_fft_free_(lte_fft_t *q) { dft_plan_free(&q->fft_plan); if (q->tmp) { free(q->tmp); } if (q->shift_buffer) { free(q->shift_buffer); } bzero(q, sizeof(lte_fft_t)); } int lte_fft_init(lte_fft_t *q, lte_cp_t cp, uint32_t nof_prb) { return lte_fft_init_(q, cp, nof_prb, FORWARD); } void lte_fft_free(lte_fft_t *q) { lte_fft_free_(q); } int lte_ifft_init(lte_fft_t *q, lte_cp_t cp, uint32_t nof_prb) { uint32_t i; int ret; ret = lte_fft_init_(q, cp, nof_prb, BACKWARD); if (ret == LIBLTE_SUCCESS) { dft_plan_set_norm(&q->fft_plan, true); /* set now zeros at CP */ for (i=0;inof_symbols;i++) { bzero(q->tmp, q->nof_guards * sizeof(cf_t)); bzero(&q->tmp[q->nof_re + q->nof_guards], q->nof_guards * sizeof(cf_t)); } } return ret; } /* Shifts the signal after the iFFT or before the FFT. * Freq_shift is relative to inter-carrier spacing. * Caution: This function shall not be called during run-time */ int lte_fft_set_freq_shift(lte_fft_t *q, float freq_shift) { q->shift_buffer = vec_malloc(sizeof(cf_t) * SF_LEN(q->symbol_sz)); if (!q->shift_buffer) { perror("malloc"); return -1; } cf_t *ptr = q->shift_buffer; for (uint32_t n=0;n<2;n++) { for (uint32_t i=0;inof_symbols;i++) { uint32_t cplen = CP_ISNORM(q->cp)?CP_NORM(i, q->symbol_sz):CP_EXT(q->symbol_sz); for (uint32_t t=0;tsymbol_sz+cplen;t++) { ptr[t] = cexpf(I*2*M_PI*((float) t-(float)cplen)*freq_shift/q->symbol_sz); } ptr += q->symbol_sz+cplen; } } /* Disable DC carrier addition */ dft_plan_set_dc(&q->fft_plan, false); q->freq_shift = true; return LIBLTE_SUCCESS; } void lte_ifft_free(lte_fft_t *q) { lte_fft_free_(q); } /* Transforms input samples into output OFDM symbols. * Performs FFT on a each symbol and removes CP. */ void lte_fft_run_slot(lte_fft_t *q, cf_t *input, cf_t *output) { uint32_t i; for (i=0;inof_symbols;i++) { input += CP_ISNORM(q->cp)?CP_NORM(i, q->symbol_sz):CP_EXT(q->symbol_sz); dft_run_c(&q->fft_plan, input, q->tmp); memcpy(output, &q->tmp[q->nof_guards], q->nof_re * sizeof(cf_t)); input += q->symbol_sz; output += q->nof_re; } } void lte_fft_run_sf(lte_fft_t *q, cf_t *input, cf_t *output) { uint32_t n; if (q->freq_shift) { vec_prod_ccc(input, q->shift_buffer, input, 2*q->slot_sz); } for (n=0;n<2;n++) { lte_fft_run_slot(q, &input[n*q->slot_sz], &output[n*q->nof_re*q->nof_symbols]); } } /* Transforms input OFDM symbols into output samples. * Performs FFT on a each symbol and adds CP. */ void lte_ifft_run_slot(lte_fft_t *q, cf_t *input, cf_t *output) { uint32_t i, cp_len; for (i=0;inof_symbols;i++) { cp_len = CP_ISNORM(q->cp)?CP_NORM(i, q->symbol_sz):CP_EXT(q->symbol_sz); memcpy(&q->tmp[q->nof_guards], input, q->nof_re * sizeof(cf_t)); dft_run_c(&q->fft_plan, q->tmp, &output[cp_len]); input += q->nof_re; /* add CP */ memcpy(output, &output[q->symbol_sz], cp_len * sizeof(cf_t)); output += q->symbol_sz + cp_len; } } void lte_fft_set_normalize(lte_fft_t *q, bool normalize_enable) { dft_plan_set_norm(&q->fft_plan, normalize_enable); } void lte_ifft_run_sf(lte_fft_t *q, cf_t *input, cf_t *output) { uint32_t n; for (n=0;n<2;n++) { lte_ifft_run_slot(q, &input[n*q->nof_re*q->nof_symbols], &output[n*q->slot_sz]); } if (q->freq_shift) { vec_prod_ccc(output, q->shift_buffer, output, 2*q->slot_sz); } }