/** * * \section COPYRIGHT * * Copyright 2013-2021 Software Radio Systems Limited * * By using this file, you agree to the terms and conditions set * forth in the LICENSE file which can be found at the top level of * the distribution. * */ #include "sched_nr_cfg_generators.h" #include "sched_nr_sim_ue.h" #include "srsran/common/phy_cfg_nr_default.h" #include "srsran/common/test_common.h" #include "srsran/common/thread_pool.h" #include namespace srsenb { using dl_sched_t = sched_nr_interface::dl_sched_t; static const srsran::phy_cfg_nr_t default_phy_cfg = srsran::phy_cfg_nr_default_t{srsran::phy_cfg_nr_default_t::reference_cfg_t{}}; struct task_job_manager { std::mutex mutex; int res_count = 0; int pdsch_count = 0; srslog::basic_logger& test_logger = srslog::fetch_basic_logger("TEST"); struct slot_guard { int count = 0; std::condition_variable cvar; }; srsran::bounded_vector slot_counter{}; explicit task_job_manager(int max_concurrent_slots = 4) : slot_counter(max_concurrent_slots) {} void start_slot(slot_point slot, int nof_sectors) { std::unique_lock lock(mutex); auto& sl = slot_counter[slot.to_uint() % slot_counter.size()]; while (sl.count > 0) { sl.cvar.wait(lock); } sl.count = nof_sectors; } void finish_cc(slot_point slot, const sched_nr_interface::dl_sched_res_t& dl_res, const sched_nr_interface::ul_sched_t& ul_res) { std::unique_lock lock(mutex); TESTASSERT(dl_res.dl_sched.pdcch_dl.size() <= 1); res_count++; pdsch_count += dl_res.dl_sched.pdcch_dl.size(); auto& sl = slot_counter[slot.to_uint() % slot_counter.size()]; if (--sl.count == 0) { sl.cvar.notify_one(); } } void wait_task_finish() { std::unique_lock lock(mutex); for (auto& sl : slot_counter) { while (sl.count > 0) { sl.cvar.wait(lock); } sl.count = 1; } } void print_results() const { test_logger.info("TESTER: %f PDSCH/{slot,cc} were allocated", pdsch_count / (double)res_count); srslog::flush(); } }; void sched_nr_cfg_serialized_test() { uint32_t max_nof_ttis = 1000, nof_sectors = 4; task_job_manager tasks; sched_nr_interface::sched_cfg_t cfg; cfg.auto_refill_buffer = true; std::vector cells_cfg = get_default_cells_cfg(nof_sectors); sched_nr_sim_base sched_tester(cfg, cells_cfg, "Serialized Test"); sched_nr_interface::ue_cfg_t uecfg = get_default_ue_cfg(nof_sectors); uecfg.fixed_dl_mcs = 15; uecfg.fixed_ul_mcs = 15; sched_tester.add_user(0x46, uecfg, slot_point{0, 0}, 0); std::vector count_per_cc(nof_sectors, 0); for (uint32_t nof_slots = 0; nof_slots < max_nof_ttis; ++nof_slots) { slot_point slot_rx(0, nof_slots % 10240); slot_point slot_tx = slot_rx + TX_ENB_DELAY; tasks.start_slot(slot_rx, nof_sectors); sched_tester.new_slot(slot_tx); for (uint32_t cc = 0; cc < cells_cfg.size(); ++cc) { sched_nr_interface::dl_sched_res_t dl_res; sched_nr_interface::ul_sched_t ul_res; auto tp1 = std::chrono::steady_clock::now(); TESTASSERT(sched_tester.get_sched()->get_dl_sched(slot_tx, cc, dl_res) == SRSRAN_SUCCESS); TESTASSERT(sched_tester.get_sched()->get_ul_sched(slot_tx, cc, ul_res) == SRSRAN_SUCCESS); auto tp2 = std::chrono::steady_clock::now(); count_per_cc[cc] += std::chrono::duration_cast(tp2 - tp1).count(); sched_nr_cc_output_res_t out{slot_tx, cc, &dl_res, &ul_res}; sched_tester.update(out); tasks.finish_cc(slot_rx, dl_res, ul_res); TESTASSERT(not srsran_duplex_nr_is_dl(&cells_cfg[cc].duplex, 0, (slot_tx).slot_idx()) or dl_res.dl_sched.pdcch_dl.size() == 1); } } tasks.print_results(); TESTASSERT(tasks.pdsch_count == (int)(max_nof_ttis * nof_sectors * 0.6)); double final_avg_usec = 0; for (uint32_t cc = 0; cc < cells_cfg.size(); ++cc) { final_avg_usec += count_per_cc[cc]; } final_avg_usec = final_avg_usec / 1000.0 / max_nof_ttis; printf("Total time taken per slot: %f usec\n", final_avg_usec); } void sched_nr_cfg_parallel_cc_test() { uint32_t nof_sectors = 4; uint32_t max_nof_ttis = 1000; task_job_manager tasks; sched_nr_interface::sched_cfg_t cfg; cfg.auto_refill_buffer = true; std::vector cells_cfg = get_default_cells_cfg(nof_sectors); sched_nr_sim_base sched_tester(cfg, cells_cfg, "Parallel CC Test"); sched_nr_interface::ue_cfg_t uecfg = get_default_ue_cfg(cells_cfg.size()); uecfg.fixed_dl_mcs = 15; uecfg.fixed_ul_mcs = 15; sched_tester.add_user(0x46, uecfg, slot_point{0, 0}, 0); std::array, SRSRAN_MAX_CARRIERS> nano_count{}; for (uint32_t nof_slots = 0; nof_slots < max_nof_ttis; ++nof_slots) { slot_point slot_rx(0, nof_slots % 10240); slot_point slot_tx = slot_rx + TX_ENB_DELAY; tasks.start_slot(slot_tx, nof_sectors); sched_tester.new_slot(slot_tx); for (uint32_t cc = 0; cc < cells_cfg.size(); ++cc) { srsran::get_background_workers().push_task([cc, slot_tx, &tasks, &sched_tester, &nano_count]() { sched_nr_interface::dl_sched_res_t dl_res; sched_nr_interface::ul_sched_t ul_res; auto tp1 = std::chrono::steady_clock::now(); TESTASSERT(sched_tester.get_sched()->get_dl_sched(slot_tx, cc, dl_res) == SRSRAN_SUCCESS); TESTASSERT(sched_tester.get_sched()->get_ul_sched(slot_tx, cc, ul_res) == SRSRAN_SUCCESS); auto tp2 = std::chrono::steady_clock::now(); nano_count[cc].fetch_add(std::chrono::duration_cast(tp2 - tp1).count(), std::memory_order_relaxed); sched_nr_cc_output_res_t out{slot_tx, cc, &dl_res, &ul_res}; sched_tester.update(out); tasks.finish_cc(slot_tx, dl_res, ul_res); }); } } tasks.wait_task_finish(); tasks.print_results(); TESTASSERT(tasks.pdsch_count == (int)(max_nof_ttis * nof_sectors * 0.6)); double final_avg_usec = 0; for (uint32_t i = 0; i < nof_sectors; ++i) { final_avg_usec += nano_count[i]; } final_avg_usec = final_avg_usec / 1000.0 / max_nof_ttis / nof_sectors; printf("Total time taken per slot [usec]: %f\n", final_avg_usec); } } // namespace srsenb int main() { auto& test_logger = srslog::fetch_basic_logger("TEST"); test_logger.set_level(srslog::basic_levels::info); auto& mac_logger = srslog::fetch_basic_logger("MAC"); mac_logger.set_level(srslog::basic_levels::info); auto& pool_logger = srslog::fetch_basic_logger("POOL"); pool_logger.set_level(srslog::basic_levels::info); // Start the log backend. srslog::init(); srsran::get_background_workers().set_nof_workers(6); srsenb::sched_nr_cfg_serialized_test(); srsenb::sched_nr_cfg_parallel_cc_test(); }