/** * * \section COPYRIGHT * * Copyright 2013-2015 Software Radio Systems Limited * * \section LICENSE * * This file is part of the srsLTE library. * * srsLTE is free software: you can redistribute it and/or modify * it under the terms of the GNU Affero General Public License as * published by the Free Software Foundation, either version 3 of * the License, or (at your option) any later version. * * srsLTE is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Affero General Public License for more details. * * A copy of the GNU Affero General Public License can be found in * the LICENSE file in the top-level directory of this distribution * and at http://www.gnu.org/licenses/. * */ #include #include #include "srslte/common/phy_common.h" #include "srslte/phch/prach.h" #include "srslte/utils/debug.h" #include "srslte/utils/vector.h" float save_corr[4096]; //PRACH detection threshold is PRACH_DETECT_FACTOR*average #define PRACH_DETECT_FACTOR 18 #define N_SEQS 64 // Number of prach sequences available #define N_RB_SC 12 // Number of subcarriers per resource block #define DELTA_F 15000 // Normal subcarrier spacing #define DELTA_F_RA 1250 // PRACH subcarrier spacing #define DELTA_F_RA_4 7500 // PRACH subcarrier spacing for format 4 #define PHI 7 // PRACH phi parameter #define PHI_4 2 // PRACH phi parameter for format 4 #define MAX_ROOTS 838 // Max number of root sequences #define PRACH_AMP 1.0 /****************************************************** * Reference tables from 3GPP TS 36.211 v10.7.0 *****************************************************/ // Table 5.7.1-1 T_cp for preamble formats uint32_t prach_Tcp[5] = {3168, 21024, 6240, 21024, 448}; // Table 5.7.1-1 T_seq for preamble formats uint32_t prach_Tseq[5] = {24576, 24576, 2*24576, 2*24576, 4096}; // Table 5.7.2-2 - N_cs values for unrestricted sets uint32_t prach_Ncs_unrestricted[16] = {0,13,15,18,22,26,32,38,46,59,76,93,119,167,279,419}; // Table 5.7.2-2 - N_cs values for restricted sets uint32_t prach_Ncs_restricted[15] = {15,18,22,26,32,38,46,55,68,82,100,128,158,202,237}; // Table 5.7.2-3 - N_cs values for preamble format 4 uint32_t prach_Ncs_format4[7] = {2,4,6,8,10,12,15}; // Table 5.7.2-4 - Root ZC sequence order uint32_t prach_zc_roots[838] = { 129, 710, 140, 699, 120, 719, 210, 629, 168, 671, 84, 755, 105, 734, 93, 746, 70, 769, 60, 779, 2, 837, 1, 838, 56, 783, 112, 727, 148, 691, 80, 759, 42, 797, 40, 799, 35, 804, 73, 766, 146, 693, 31, 808, 28, 811, 30, 809, 27, 812, 29, 810, 24, 815, 48, 791, 68, 771, 74, 765, 178, 661, 136, 703, 86, 753, 78, 761, 43, 796, 39, 800, 20, 819, 21, 818, 95, 744, 202, 637, 190, 649, 181, 658, 137, 702, 125, 714, 151, 688, 217, 622, 128, 711, 142, 697, 122, 717, 203, 636, 118, 721, 110, 729, 89, 750, 103, 736, 61, 778, 55, 784, 15, 824, 14, 825, 12, 827, 23, 816, 34, 805, 37, 802, 46, 793, 207, 632, 179, 660, 145, 694, 130, 709, 223, 616, 228, 611, 227, 612, 132, 707, 133, 706, 143, 696, 135, 704, 161, 678, 201, 638, 173, 666, 106, 733, 83, 756, 91, 748, 66, 773, 53, 786, 10, 829, 9, 830, 7, 832, 8, 831, 16, 823, 47, 792, 64, 775, 57, 782, 104, 735, 101, 738, 108, 731, 208, 631, 184, 655, 197, 642, 191, 648, 121, 718, 141, 698, 149, 690, 216, 623, 218, 621, 152, 687, 144, 695, 134, 705, 138, 701, 199, 640, 162, 677, 176, 663, 119, 720, 158, 681, 164, 675, 174, 665, 171, 668, 170, 669, 87, 752, 169, 670, 88, 751, 107, 732, 81, 758, 82, 757, 100, 739, 98, 741, 71, 768, 59, 780, 65, 774, 50, 789, 49, 790, 26, 813, 17, 822, 13, 826, 6, 833, 5, 834, 33, 806, 51, 788, 75, 764, 99, 740, 96, 743, 97, 742, 166, 673, 172, 667, 175, 664, 187, 652, 163, 676, 185, 654, 200, 639, 114, 725, 189, 650, 115, 724, 194, 645, 195, 644, 192, 647, 182, 657, 157, 682, 156, 683, 211, 628, 154, 685, 123, 716, 139, 700, 212, 627, 153, 686, 213, 626, 215, 624, 150, 689, 225, 614, 224, 615, 221, 618, 220, 619, 127, 712, 147, 692, 124, 715, 193, 646, 205, 634, 206, 633, 116, 723, 160, 679, 186, 653, 167, 672, 79, 760, 85, 754, 77, 762, 92, 747, 58, 781, 62, 777, 69, 770, 54, 785, 36, 803, 32, 807, 25, 814, 18, 821, 11, 828, 4, 835, 3, 836, 19, 820, 22, 817, 41, 798, 38, 801, 44, 795, 52, 787, 45, 794, 63, 776, 67, 772, 72, 767, 76, 763, 94, 745, 102, 737, 90, 749, 109, 730, 165, 674, 111, 728, 209, 630, 204, 635, 117, 722, 188, 651, 159, 680, 198, 641, 113, 726, 183, 656, 180, 659, 177, 662, 196, 643, 155, 684, 214, 625, 126, 713, 131, 708, 219, 620, 222, 617, 226, 613, 230, 609, 232, 607, 262, 577, 252, 587, 418, 421, 416, 423, 413, 426, 411, 428, 376, 463, 395, 444, 283, 556, 285, 554, 379, 460, 390, 449, 363, 476, 384, 455, 388, 451, 386, 453, 361, 478, 387, 452, 360, 479, 310, 529, 354, 485, 328, 511, 315, 524, 337, 502, 349, 490, 335, 504, 324, 515, 323, 516, 320, 519, 334, 505, 359, 480, 295, 544, 385, 454, 292, 547, 291, 548, 381, 458, 399, 440, 380, 459, 397, 442, 369, 470, 377, 462, 410, 429, 407, 432, 281, 558, 414, 425, 247, 592, 277, 562, 271, 568, 272, 567, 264, 575, 259, 580, 237, 602, 239, 600, 244, 595, 243, 596, 275, 564, 278, 561, 250, 589, 246, 593, 417, 422, 248, 591, 394, 445, 393, 446, 370, 469, 365, 474, 300, 539, 299, 540, 364, 475, 362, 477, 298, 541, 312, 527, 313, 526, 314, 525, 353, 486, 352, 487, 343, 496, 327, 512, 350, 489, 326, 513, 319, 520, 332, 507, 333, 506, 348, 491, 347, 492, 322, 517, 330, 509, 338, 501, 341, 498, 340, 499, 342, 497, 301, 538, 366, 473, 401, 438, 371, 468, 408, 431, 375, 464, 249, 590, 269, 570, 238, 601, 234, 605, 257, 582, 273, 566, 255, 584, 254, 585, 245, 594, 251, 588, 412, 427, 372, 467, 282, 557, 403, 436, 396, 443, 392, 447, 391, 448, 382, 457, 389, 450, 294, 545, 297, 542, 311, 528, 344, 495, 345, 494, 318, 521, 331, 508, 325, 514, 321, 518, 346, 493, 339, 500, 351, 488, 306, 533, 289, 550, 400, 439, 378, 461, 374, 465, 415, 424, 270, 569, 241, 598, 231, 608, 260, 579, 268, 571, 276, 563, 409, 430, 398, 441, 290, 549, 304, 535, 308, 531, 358, 481, 316, 523, 293, 546, 288, 551, 284, 555, 368, 471, 253, 586, 256, 583, 263, 576, 242, 597, 274, 565, 402, 437, 383, 456, 357, 482, 329, 510, 317, 522, 307, 532, 286, 553, 287, 552, 266, 573, 261, 578, 236, 603, 303, 536, 356, 483, 355, 484, 405, 434, 404, 435, 406, 433, 235, 604, 267, 572, 302, 537, 309, 530, 265, 574, 233, 606, 367, 472, 296, 543, 336, 503, 305, 534, 373, 466, 280, 559, 279, 560, 419, 420, 240, 599, 258, 581, 229, 610}; // Table 5.7.2-5 - Root ZC sequence order for preamble format 4 uint32_t prach_zc_roots_format4[138] = { 1, 138, 2, 137, 3, 136, 4, 135, 5, 134, 6, 133, 7, 132, 8, 131, 9, 130, 10, 129, 11, 128, 12, 127, 13, 126, 14, 125, 15, 124, 16, 123, 17, 122, 18, 121, 19, 120, 20, 119, 21, 118, 22, 117, 23, 116, 24, 115, 25, 114, 26, 113, 27, 112, 28, 111, 29, 110, 30, 109, 31, 108, 32, 107, 33, 106, 34, 105, 35, 104, 36, 103, 37, 102, 38, 101, 39, 100, 40, 99, 41, 98, 42, 97, 43, 96, 44, 95, 45, 94, 46, 93, 47, 92, 48, 91, 49, 90, 50, 89, 51, 88, 52, 87, 53, 86, 54, 85, 55, 84, 56, 83, 57, 82, 58, 81, 59, 80, 60, 79, 61, 78, 62, 77, 63, 76, 64, 75, 65, 74, 66, 73, 67, 72, 68, 71, 69, 70}; srslte_prach_sf_config_t prach_sf_config[16] = { {1, {1, 0, 0, 0, 0}}, {1, {4, 0, 0, 0, 0}}, {1, {7, 0, 0, 0, 0}}, {1, {1, 0, 0, 0, 0}}, {1, {4, 0, 0, 0, 0}}, {1, {7, 0, 0, 0, 0}}, {2, {1, 6, 0, 0, 0}}, {2, {2, 7, 0, 0, 0}}, {2, {3, 8, 0, 0, 0}}, {3, {1, 4, 7, 0, 0}}, {3, {2, 5, 8, 0, 0}}, {3, {3, 6, 9, 0, 0}}, {5, {0, 2, 4, 6, 8}}, {5, {1, 3, 5, 7, 9}}, {-1, {0, 0, 0, 0, 0}}, // this means all subframes {1, {9, 0, 0, 0, 0}}}; uint32_t srslte_prach_get_preamble_format(uint32_t config_idx) { return config_idx/16; } srslte_prach_sfn_t srslte_prach_get_sfn(uint32_t config_idx) { if ((config_idx%16)<3 || (config_idx%16)==15) { return SRSLTE_PRACH_SFN_EVEN; } else { return SRSLTE_PRACH_SFN_ANY; } } /* Returns true if current_tti is a valid opportunity for PRACH transmission and the is an allowed subframe, * or allowed_subframe == -1 */ bool srslte_prach_tti_opportunity(srslte_prach_t *p, uint32_t current_tti, int allowed_subframe) { uint32_t config_idx = p->config_idx; // Get SFN and sf_idx from the PRACH configuration index srslte_prach_sfn_t prach_sfn = srslte_prach_get_sfn(config_idx); // This is the only option which provides always an opportunity for PRACH transmission. if(config_idx == 14) { return true; } if ((prach_sfn == SRSLTE_PRACH_SFN_EVEN && ((current_tti/10)%2)==0) || prach_sfn == SRSLTE_PRACH_SFN_ANY) { srslte_prach_sf_config_t sf_config; srslte_prach_sf_config(config_idx, &sf_config); for (int i=0;i v_max){ // Get a new root sequence if(4 == p->f){ u = prach_zc_roots_format4[(p->rsi + p->N_roots)%138]; }else{ u = prach_zc_roots[(p->rsi + p->N_roots)%838]; } for(int j=0;jN_zc;j++){ double phase = -M_PI*u*j*(j+1)/p->N_zc; root[j] = cexp(phase*I); } p->root_seqs_idx[p->N_roots++] = i; // Determine v_max if(p->hs){ // High-speed cell for(p_=1; p_<=p->N_zc; p_++){ if(((p_*u) % p->N_zc) == 1) break; } if(p_ < p->N_zc/2){ d_u = p_; }else{ d_u = p->N_zc - p_; } if(d_u >= p->N_cs && d_u < p->N_zc/3){ N_shift = d_u/p->N_cs; d_start = 2*d_u + N_shift*p->N_cs; N_group = p->N_zc/d_start; N_neg_shift = (p->N_zc - 2*d_u - N_group*d_start)/p->N_cs; if(N_neg_shift < 0) N_neg_shift = 0; }else{ N_shift = (p->N_zc - 2*d_u)/p->N_cs; d_start = p->N_zc - 2*d_u + N_shift*p->N_cs; N_group = d_u/d_start; N_neg_shift = (d_u - N_group*d_start)/p->N_cs; if(N_neg_shift < 0) N_neg_shift = 0; if(N_neg_shift > N_shift) N_neg_shift = N_shift; } v_max = N_shift*N_group + N_neg_shift - 1; if(v_max < 0){ v_max = 0; } }else{ // Normal cell if(0 == p->N_cs){ v_max = 0; }else{ v_max = (p->N_zc/p->N_cs)-1; } } v=0; } // Shift root and add to set if(p->hs){ if(N_shift==0){ C_v = 0; }else{ C_v = d_start*floor(v/N_shift) + (v % N_shift)*p->N_cs; } }else{ C_v = v*p->N_cs; } for(int j=0;jN_zc;j++){ p->seqs[i][j] = root[(j+C_v) % p->N_zc]; } v++; } return 0; } int srslte_prach_init_cfg(srslte_prach_t *p, srslte_prach_cfg_t *cfg, uint32_t nof_prb) { return srslte_prach_init(p, srslte_symbol_sz(nof_prb), cfg->config_idx, cfg->root_seq_idx, cfg->hs_flag, cfg->zero_corr_zone); } int srslte_prach_init(srslte_prach_t *p, uint32_t N_ifft_ul, uint32_t config_idx, uint32_t root_seq_index, bool high_speed_flag, uint32_t zero_corr_zone_config) { int ret = SRSLTE_ERROR; if(p != NULL && N_ifft_ul < 2049 && config_idx < 64 && root_seq_index < MAX_ROOTS) { uint32_t preamble_format = srslte_prach_get_preamble_format(config_idx); p->config_idx = config_idx; p->f = preamble_format; p->rsi = root_seq_index; p->hs = high_speed_flag; p->zczc = zero_corr_zone_config; p->detect_factor = PRACH_DETECT_FACTOR; // Determine N_zc and N_cs if(4 == preamble_format){ if (p->zczc < 7) { p->N_zc = 139; p->N_cs = prach_Ncs_format4[p->zczc]; } else { fprintf(stderr, "Invalid zeroCorrelationZoneConfig=%d for format4\n", p->zczc); return SRSLTE_ERROR; } }else{ p->N_zc = 839; if(p->hs){ if (p->zczc < 15) { p->N_cs = prach_Ncs_restricted[p->zczc]; } else { fprintf(stderr, "Invalid zeroCorrelationZoneConfig=%d for restricted set\n", p->zczc); return SRSLTE_ERROR; } }else{ if (p->zczc < 16) { p->N_cs = prach_Ncs_unrestricted[p->zczc]; } else { fprintf(stderr, "Invalid zeroCorrelationZoneConfig=%d\n", p->zczc); return SRSLTE_ERROR; } } } // Set up containers p->prach_bins = srslte_vec_malloc(sizeof(cf_t)*p->N_zc); p->corr_spec = srslte_vec_malloc(sizeof(cf_t)*p->N_zc); p->corr = srslte_vec_malloc(sizeof(float)*p->N_zc); // Set up ZC FFTS p->zc_fft = (srslte_dft_plan_t*)srslte_vec_malloc(sizeof(srslte_dft_plan_t)); if(srslte_dft_plan(p->zc_fft, p->N_zc, SRSLTE_DFT_FORWARD, SRSLTE_DFT_COMPLEX)){ return SRSLTE_ERROR; } srslte_dft_plan_set_mirror(p->zc_fft, false); srslte_dft_plan_set_norm(p->zc_fft, true); p->zc_ifft = (srslte_dft_plan_t*)srslte_vec_malloc(sizeof(srslte_dft_plan_t)); if(srslte_dft_plan(p->zc_ifft, p->N_zc, SRSLTE_DFT_BACKWARD, SRSLTE_DFT_COMPLEX)){ return SRSLTE_ERROR; } srslte_dft_plan_set_mirror(p->zc_ifft, false); srslte_dft_plan_set_norm(p->zc_ifft, false); // Generate our 64 sequences p->N_roots = 0; srslte_prach_gen_seqs(p); // Generate sequence FFTs for(int i=0;izc_fft, p->seqs[i], p->dft_seqs[i]); } // Create our FFT objects and buffers p->N_ifft_ul = N_ifft_ul; if(4 == preamble_format){ p->N_ifft_prach = p->N_ifft_ul * DELTA_F/DELTA_F_RA_4; }else{ p->N_ifft_prach = p->N_ifft_ul * DELTA_F/DELTA_F_RA; } /* The deadzone specifies the number of samples at the end of the correlation window * that will be considered as belonging to the next preamble */ p->deadzone = 0; /* if(p->N_cs != 0) { float samp_rate=15000*p->N_ifft_ul; p->deadzone = (uint32_t) ceil((float) samp_rate/((float) p->N_zc*subcarrier_spacing)); }*/ p->ifft_in = (cf_t*)srslte_vec_malloc(p->N_ifft_prach*sizeof(cf_t)); p->ifft_out = (cf_t*)srslte_vec_malloc(p->N_ifft_prach*sizeof(cf_t)); p->ifft = (srslte_dft_plan_t*)srslte_vec_malloc(sizeof(srslte_dft_plan_t)); if(srslte_dft_plan(p->ifft, p->N_ifft_prach, SRSLTE_DFT_BACKWARD, SRSLTE_DFT_COMPLEX)) { fprintf(stderr, "Error creating DFT plan\n"); return -1; } srslte_dft_plan_set_mirror(p->ifft, true); srslte_dft_plan_set_norm(p->ifft, true); p->fft = (srslte_dft_plan_t*)srslte_vec_malloc(sizeof(srslte_dft_plan_t)); if(srslte_dft_plan(p->fft, p->N_ifft_prach, SRSLTE_DFT_FORWARD, SRSLTE_DFT_COMPLEX)){ fprintf(stderr, "Error creating DFT plan\n"); return -1; } p->signal_fft = srslte_vec_malloc(sizeof(cf_t)*p->N_ifft_prach); if (!p->signal_fft) { fprintf(stderr, "Error allocating memory\n"); return -1; } srslte_dft_plan_set_mirror(p->fft, true); srslte_dft_plan_set_norm(p->fft, false); p->N_seq = prach_Tseq[p->f]*p->N_ifft_ul/2048; p->N_cp = prach_Tcp[p->f]*p->N_ifft_ul/2048; p->T_seq = prach_Tseq[p->f]*SRSLTE_LTE_TS; ret = SRSLTE_SUCCESS; } else { fprintf(stderr, "Invalid parameters\n"); } return ret; } int srslte_prach_gen(srslte_prach_t *p, uint32_t seq_index, uint32_t freq_offset, cf_t *signal) { int ret = SRSLTE_ERROR; if(p != NULL && seq_index < N_SEQS && signal != NULL) { // Calculate parameters uint32_t N_rb_ul = srslte_nof_prb(p->N_ifft_ul); uint32_t k_0 = freq_offset*N_RB_SC - N_rb_ul*N_RB_SC/2 + p->N_ifft_ul/2; uint32_t K = DELTA_F/DELTA_F_RA; uint32_t begin = PHI + (K*k_0) + (K/2); if (6 + freq_offset > N_rb_ul) { fprintf(stderr, "Error no space for PRACH: frequency offset=%d, N_rb_ul=%d\n", freq_offset, N_rb_ul); return ret; } DEBUG("N_zc: %d, N_cp: %d, N_seq: %d, N_ifft_prach=%d begin: %d\n", p->N_zc, p->N_cp, p->N_seq, p->N_ifft_prach, begin); // Map dft-precoded sequence to ifft bins memset(p->ifft_in, 0, begin*sizeof(cf_t)); memcpy(&p->ifft_in[begin], p->dft_seqs[seq_index], p->N_zc * sizeof(cf_t)); memset(&p->ifft_in[begin+p->N_zc], 0, (p->N_ifft_prach - begin - p->N_zc) * sizeof(cf_t)); srslte_dft_run(p->ifft, p->ifft_in, p->ifft_out); // Copy CP into buffer memcpy(signal, &p->ifft_out[p->N_ifft_prach-p->N_cp], p->N_cp*sizeof(cf_t)); // Copy preamble sequence into buffer for(int i=0;iN_seq;i++){ signal[p->N_cp+i] = p->ifft_out[i%p->N_ifft_prach]; } ret = SRSLTE_SUCCESS; } return ret; } void srslte_prach_set_detect_factor(srslte_prach_t *p, float ratio) { p->detect_factor = ratio; } int srslte_prach_detect(srslte_prach_t *p, uint32_t freq_offset, cf_t *signal, uint32_t sig_len, uint32_t *indices, uint32_t *n_indices) { return srslte_prach_detect_offset(p, freq_offset, signal, sig_len, indices, NULL, NULL, n_indices); } int srslte_prach_detect_offset(srslte_prach_t *p, uint32_t freq_offset, cf_t *signal, uint32_t sig_len, uint32_t *indices, float *t_offsets, float *peak_to_avg, uint32_t *n_indices) { int ret = SRSLTE_ERROR; if(p != NULL && signal != NULL && sig_len > 0 && indices != NULL) { if(sig_len < p->N_ifft_prach){ fprintf(stderr, "srslte_prach_detect: Signal length is %d and should be %d\n", sig_len, p->N_ifft_prach); return SRSLTE_ERROR_INVALID_INPUTS; } // FFT incoming signal srslte_dft_run(p->fft, signal, p->signal_fft); *n_indices = 0; // Extract bins of interest uint32_t N_rb_ul = srslte_nof_prb(p->N_ifft_ul); uint32_t k_0 = freq_offset*N_RB_SC - N_rb_ul*N_RB_SC/2 + p->N_ifft_ul/2; uint32_t K = DELTA_F/DELTA_F_RA; uint32_t begin = PHI + (K*k_0) + (K/2); memcpy(p->prach_bins, &p->signal_fft[begin], p->N_zc*sizeof(cf_t)); for(int i=0;iN_roots;i++){ cf_t *root_spec = p->dft_seqs[p->root_seqs_idx[i]]; srslte_vec_prod_conj_ccc(p->prach_bins, root_spec, p->corr_spec, p->N_zc); srslte_dft_run(p->zc_ifft, p->corr_spec, p->corr_spec); srslte_vec_abs_square_cf(p->corr_spec, p->corr, p->N_zc); float corr_ave = srslte_vec_acc_ff(p->corr, p->N_zc)/p->N_zc; uint32_t winsize = 0; if(p->N_cs != 0){ winsize = p->N_cs; }else{ winsize = p->N_zc; } uint32_t n_wins = p->N_zc/winsize; float max_peak = 0; for(int j=0;jN_zc-(j*p->N_cs))%p->N_zc; uint32_t end = start+winsize; if (end>p->deadzone) { end-=p->deadzone; } start += p->deadzone; p->peak_values[j] = 0; for(int k=start;kcorr[k] > p->peak_values[j]) { p->peak_values[j] = p->corr[k]; p->peak_offsets[j] = k-start; if (p->peak_values[j] > max_peak) { max_peak = p->peak_values[j]; } } } } if (max_peak > p->detect_factor*corr_ave) { for (int j=0;jpeak_values[j] > p->detect_factor*corr_ave) { //printf("saving prach correlation\n"); //memcpy(save_corr, p->corr, p->N_zc*sizeof(float)); if (indices) { indices[*n_indices] = (i*n_wins)+j; } if (peak_to_avg) { peak_to_avg[*n_indices] = p->peak_values[j]/corr_ave; } if (t_offsets) { t_offsets[*n_indices] = (float) p->peak_offsets[j]*p->T_seq/p->N_zc; } (*n_indices)++; } } } } ret = SRSLTE_SUCCESS; } return ret; } int srslte_prach_free(srslte_prach_t *p) { free(p->prach_bins); free(p->corr_spec); free(p->corr); srslte_dft_plan_free(p->ifft); free(p->ifft); free(p->ifft_in); free(p->ifft_out); srslte_dft_plan_free(p->fft); free(p->fft); srslte_dft_plan_free(p->zc_fft); free(p->zc_fft); srslte_dft_plan_free(p->zc_ifft); free(p->zc_ifft); if (p->signal_fft) { free(p->signal_fft); } bzero(p, sizeof(srslte_prach_t)); return 0; } int srslte_prach_print_seqs(srslte_prach_t *p) { for(int i=0; iseqs[i] , sizeof(cf_t), p->N_zc, f); fclose(f); } for(int i=0; idft_seqs[i] , sizeof(cf_t), p->N_zc, f); fclose(f); } for(int i=0;iN_roots;i++) { FILE *f; char str[32]; sprintf(str, "prach_root_seq_%d.bin", i); f = fopen(str, "wb"); fwrite(p->seqs[p->root_seqs_idx[i]] , sizeof(cf_t), p->N_zc, f); fclose(f); } return 0; }