/* * Copyright 2013-2020 Software Radio Systems Limited * * This file is part of srsLTE. * * srsLTE is free software: you can redistribute it and/or modify * it under the terms of the GNU Affero General Public License as * published by the Free Software Foundation, either version 3 of * the License, or (at your option) any later version. * * srsLTE is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Affero General Public License for more details. * * A copy of the GNU Affero General Public License can be found in * the LICENSE file in the top-level directory of this distribution * and at http://www.gnu.org/licenses/. * */ #include #include #include #include #include #define CALLBACK(NAME, ...) \ private: \ bool received_##NAME = false; \ \ public: \ bool wait_##NAME(uint32_t timeout_ms, bool reset_flag = false) \ { \ std::unique_lock lock(mutex); \ std::chrono::system_clock::time_point expire_time = std::chrono::system_clock::now(); \ expire_time += std::chrono::milliseconds(timeout_ms); \ bool expired = false; \ if (reset_flag) { \ received_##NAME = false; \ } \ while (!received_##NAME && !expired) { \ expired = (cvar.wait_until(lock, expire_time) == std::cv_status::timeout); \ } \ if (expired) { \ log_h.info("Expired " #NAME " waiting\n"); \ } \ return received_##NAME; \ } \ \ bool get_received_##NAME() { return received_##NAME; } \ \ private: \ void notify_##NAME(__VA_ARGS__) \ { \ std::unique_lock lock(mutex); \ cvar.notify_all(); \ log_h.info(#NAME " received\n"); \ received_##NAME = true; \ } class phy_test_bench : public srslte::thread { private: // Dummy classes class dummy_stack : public srsue::stack_interface_phy_lte { private: srslte::log_filter log_h; uint16_t rnti = 0x3c; std::mutex mutex; std::condition_variable cvar; CALLBACK(in_sync) CALLBACK(out_of_sync) CALLBACK(new_phy_meas) CALLBACK(new_grant_ul) CALLBACK(new_grant_dl) CALLBACK(run_tti) public: // Local test access methods explicit dummy_stack(srslte::logger& logger) : log_h("stack", &logger) {} void set_rnti(uint16_t rnti_) { rnti = rnti_; } void set_loglevel(std::string& str) { log_h.set_level(str); } void in_sync() override { notify_in_sync(); } void out_of_sync() override { notify_out_of_sync(); } void new_cell_meas(const std::vector& meas) override { for (auto& m : meas) { notify_new_phy_meas(); log_h.info( "New measurement earfcn=%d; pci=%d; rsrp=%+.1fdBm; rsrq=%+.1fdB;\n", m.earfcn, m.pci, m.rsrp, m.rsrq); } } uint16_t get_dl_sched_rnti(uint32_t tti) override { return rnti; } uint16_t get_ul_sched_rnti(uint32_t tti) override { return rnti; } void new_grant_ul(uint32_t cc_idx, mac_grant_ul_t grant, tb_action_ul_t* action) override { notify_new_grant_ul(); } void new_grant_dl(uint32_t cc_idx, mac_grant_dl_t grant, tb_action_dl_t* action) override { notify_new_grant_dl(); for (auto& i : action->tb) { i.enabled = true; } } void tb_decoded(uint32_t cc_idx, mac_grant_dl_t grant, bool* ack) override {} void bch_decoded_ok(uint32_t cc_idx, uint8_t* payload, uint32_t len) override {} void mch_decoded(uint32_t len, bool crc) override {} void new_mch_dl(const srslte_pdsch_grant_t& phy_grant, tb_action_dl_t* action) override {} void set_mbsfn_config(uint32_t nof_mbsfn_services) override {} void run_tti(const uint32_t tti, const uint32_t tti_jump) override { notify_run_tti(); log_h.info("Run TTI %d\n", tti); } }; class dummy_radio : public srslte::radio_interface_phy { private: srslte::log_filter log_h; std::vector ring_buffers; float base_srate = 0.0f; float tx_srate = 0.0f; float rx_srate = 0.0f; float rx_gain = 0.0f; float tx_freq = 0.0f; float rx_freq = 0.0f; cf_t* temp_buffer = nullptr; uint64_t rx_timestamp = 0; std::mutex mutex; std::condition_variable cvar; srslte_rf_info_t rf_info = {}; srslte_timestamp_t tx_last_tx = {}; uint32_t count_late = 0; CALLBACK(rx_now) CALLBACK(tx) CALLBACK(late) public: dummy_radio(srslte::logger& logger, uint32_t nof_channels, float base_srate_) : log_h("radio", &logger), ring_buffers(nof_channels), base_srate(base_srate_) { // Create Ring buffers for (auto& rb : ring_buffers) { if (srslte_ringbuffer_init(&rb, (uint32_t)sizeof(cf_t) * SRSLTE_SF_LEN_MAX * SRSLTE_NOF_SF_X_FRAME)) { perror("init softbuffer"); } } // Create temporal buffer temp_buffer = srslte_vec_cf_malloc(SRSLTE_SF_LEN_MAX * SRSLTE_NOF_SF_X_FRAME); if (!temp_buffer) { perror("malloc"); } // Set RF Info (in dB) rf_info.min_rx_gain = 0.0f; rf_info.max_rx_gain = 90.0f; rf_info.min_tx_gain = 0.0f; rf_info.max_tx_gain = 90.0f; } ~dummy_radio() { for (auto& rb : ring_buffers) { srslte_ringbuffer_free(&rb); } if (temp_buffer) { free(temp_buffer); } } void set_loglevel(std::string& str) { log_h.set_level(str); } void write_ring_buffers(cf_t** buffer, uint32_t nsamples) { for (uint32_t i = 0; i < ring_buffers.size(); i++) { int ret = SRSLTE_SUCCESS; do { if (ret != SRSLTE_SUCCESS) { log_h.error("Ring buffer write failed (full). Trying again.\n"); } ret = srslte_ringbuffer_write_timed(&ring_buffers[i], buffer[i], (uint32_t)sizeof(cf_t) * nsamples, 1000); } while (ret == SRSLTE_ERROR_TIMEOUT); } } uint32_t get_count_late() { return count_late; } bool tx(srslte::rf_buffer_interface& buffer, const uint32_t& nof_samples, const srslte_timestamp_t& tx_time) override { bool ret = true; notify_tx(); std::lock_guard lock(mutex); if (!std::isnormal(tx_srate)) { count_late++; } if (srslte_timestamp_compare(&tx_time, &tx_last_tx) < 0) { ret = false; } tx_last_tx = tx_time; srslte_timestamp_add(&tx_last_tx, 0, (double)nof_samples / (double)tx_srate); return ret; } void release_freq(const uint32_t& carrier_idx) override{}; void tx_end() override {} bool rx_now(srslte::rf_buffer_interface& buffer, const uint32_t& nof_samples, srslte_timestamp_t* rxd_time) override { notify_rx_now(); std::lock_guard lock(mutex); auto base_nsamples = (uint32_t)floorf(((float)nof_samples * base_srate) / rx_srate); for (uint32_t i = 0; i < ring_buffers.size(); i++) { cf_t* buf_ptr = ((buffer.get(i) != nullptr) && (base_srate == rx_srate)) ? buffer.get(i) : temp_buffer; // Read base srate samples int ret = srslte_ringbuffer_read(&ring_buffers[i], buf_ptr, (uint32_t)sizeof(cf_t) * base_nsamples); if (ret < 0) { log_h.error("Reading ring buffer\n"); } else { log_h.debug("-- %d samples read from ring buffer\n", base_nsamples); } // Only if baseband buffer is provided if (buffer.get(i)) { if (base_srate > rx_srate) { // Decimate auto decimation = (uint32_t)roundf(base_srate / rx_srate); // Perform decimation for (uint32_t j = 0, k = 0; j < nof_samples; j++, k += decimation) { buffer.get(i)[j] = buf_ptr[k]; } } else if (base_srate < rx_srate) { // Interpolate auto interpolation = (uint32_t)roundf(rx_srate / base_srate); // Perform zero order hold interpolation for (uint32_t j = 0, k = 0; j < nof_samples; k++) { for (uint32_t c = 0; c < interpolation; c++, j++) { buffer.get(i)[j] = buf_ptr[k]; } } } } } // Set Rx timestamp if (rxd_time) { srslte_timestamp_init_uint64(rxd_time, rx_timestamp, (double)base_srate); } // Update timestamp rx_timestamp += base_nsamples; return true; } void set_tx_freq(const uint32_t& channel_idx, const double& freq) override { std::unique_lock lock(mutex); tx_freq = (float)freq; log_h.info("Set Tx freq to %+.0f MHz.\n", freq * 1.0e-6); } void set_rx_freq(const uint32_t& channel_idx, const double& freq) override { std::unique_lock lock(mutex); rx_freq = (float)freq; log_h.info("Set Rx freq to %+.0f MHz.\n", freq * 1.0e-6); } void set_rx_gain_th(const float& gain) override { std::unique_lock lock(mutex); rx_gain = srslte_convert_dB_to_amplitude(gain); log_h.info("Set Rx gain-th to %+.1f dB (%.6f).\n", gain, rx_gain); } void set_tx_gain(const float& gain) override { std::unique_lock lock(mutex); rx_gain = srslte_convert_dB_to_amplitude(gain); log_h.info("Set Tx gain to %+.1f dB (%.6f).\n", gain, rx_gain); } void set_rx_gain(const float& gain) override { std::unique_lock lock(mutex); rx_gain = srslte_convert_dB_to_amplitude(gain); log_h.info("Set Rx gain to %+.1f dB (%.6f).\n", gain, rx_gain); } void set_tx_srate(const double& srate) override { std::unique_lock lock(mutex); tx_srate = (float)srate; log_h.info("Set Tx sampling rate to %+.3f MHz.\n", srate * 1.0e-6); } void set_rx_srate(const double& srate) override { std::unique_lock lock(mutex); rx_srate = (float)srate; log_h.info("Set Rx sampling rate to %+.3f MHz.\n", srate * 1.0e-6); } float get_rx_gain() override { std::unique_lock lock(mutex); return srslte_convert_amplitude_to_dB(rx_gain); } double get_freq_offset() override { return 0; } bool is_continuous_tx() override { return false; } bool get_is_start_of_burst() override { return false; } bool is_init() override { return false; } void reset() override {} srslte_rf_info_t* get_info() override { return &rf_info; } }; // Common instances srslte::logger_stdout main_logger; srslte::log_filter log_h; // Dummy instances dummy_stack stack; dummy_radio radio; // Phy Instances std::unique_ptr phy; // eNb srslte_enb_dl_t enb_dl = {}; cf_t* enb_dl_buffer[SRSLTE_MAX_PORTS] = {}; srslte_dl_sf_cfg_t dl_sf_cfg = {}; uint64_t sfn = 0; // System Frame Number uint32_t sf_len = 0; // Control atributes bool running = false; std::mutex mutex; std::condition_variable cvar; public: phy_test_bench(const srsue::phy_args_t& phy_args, const srslte_cell_t& cell) : stack(main_logger), radio(main_logger, cell.nof_ports, srslte_sampling_freq_hz(cell.nof_prb)), thread("phy_test_bench"), log_h("test bench") { // Deduce physical attributes sf_len = SRSLTE_SF_LEN_PRB(cell.nof_prb); // Initialise UE phy = std::unique_ptr(new srsue::phy(&main_logger)); phy->init(phy_args, &stack, &radio); // Initialise DL baseband buffers for (uint32_t i = 0; i < cell.nof_ports; i++) { enb_dl_buffer[i] = srslte_vec_cf_malloc(sf_len); if (!enb_dl_buffer[i]) { perror("malloc"); } } // Initialise eNb DL srslte_enb_dl_init(&enb_dl, enb_dl_buffer, SRSLTE_MAX_PRB); srslte_enb_dl_set_cell(&enb_dl, cell); // Wait PHY init to end phy->wait_initialize(); } ~phy_test_bench() { // Free eNb DL object srslte_enb_dl_free(&enb_dl); // Free buffers for (auto& buf : enb_dl_buffer) { if (buf) { free(buf); buf = nullptr; } } } dummy_stack* get_stack() { return &stack; } dummy_radio* get_radio() { return &radio; } srsue::phy_interface_rrc_lte* get_phy_interface_rrc() { return phy.get(); } srsue::phy_interface_mac_lte* get_phy_interface_mac() { return phy.get(); } void configure_dedicated(uint16_t rnti, srslte::phy_cfg_t& phy_cfg) { // set RNTI phy->set_crnti(rnti); // Set PHY configuration phy->set_config(phy_cfg, 0, 0, nullptr); } void run_thread() override { bool _running; // Free run DL do { log_h.debug("-- generating DL baseband SFN=%" PRId64 " TTI=%d;\n", sfn, dl_sf_cfg.tti); // Create empty resource grid with basic signals srslte_enb_dl_put_base(&enb_dl, &dl_sf_cfg); // Generate signal and transmit srslte_enb_dl_gen_signal(&enb_dl); // Write baseband to radio radio.write_ring_buffers(enb_dl_buffer, sf_len); // Increase TTI dl_sf_cfg.tti++; // Increase System Frame number if (dl_sf_cfg.tti >= 10240U) { dl_sf_cfg.tti = 0; sfn++; } // Update local running state mutex.lock(); _running = running; mutex.unlock(); } while (_running); // Stop PHY now! phy->stop(); // Finish thread } void start() { std::lock_guard lock(mutex); running = true; thread::start(); } void stop() { cvar.notify_all(); mutex.lock(); running = false; mutex.unlock(); wait_thread_finish(); } void set_loglevel(std::string str) { log_h.set_level(str); radio.set_loglevel(str); stack.set_loglevel(str); } }; int main(int argc, char** argv) { int ret = SRSLTE_SUCCESS; const uint32_t default_timeout = 60000; // 1 minute // Define Cell srslte_cell_t cell = {.nof_prb = 6, .nof_ports = 4, .id = 1, .cp = SRSLTE_CP_NORM, .phich_length = SRSLTE_PHICH_NORM, .phich_resources = SRSLTE_PHICH_R_1, .frame_type = SRSLTE_FDD}; // Define PHY arguments srsue::phy_args_t phy_args = {}; // Set custom test cell and arguments here phy_args.log.phy_level = "info"; // Create test bench std::unique_ptr phy_test = std::unique_ptr(new phy_test_bench(phy_args, cell)); phy_test->set_loglevel("info"); // Start test bench phy_test->start(); // 1. Cell search srsue::phy_interface_rrc_lte::phy_cell_t phy_cell; auto cell_search_res = phy_test->get_phy_interface_rrc()->cell_search(&phy_cell); TESTASSERT(cell_search_res.found == srsue::phy_interface_rrc_lte::cell_search_ret_t::CELL_FOUND); TESTASSERT(phy_test->get_stack()->wait_in_sync(default_timeout)); TESTASSERT(phy_cell.pci == cell.id); // 2. Cell select phy_test->get_phy_interface_rrc()->cell_select(&phy_cell); TESTASSERT(phy_test->get_stack()->wait_in_sync(default_timeout)); TESTASSERT(phy_test->get_stack()->wait_new_phy_meas(default_timeout)); // 3. Transmit PRACH phy_test->get_phy_interface_mac()->configure_prach_params(); phy_test->get_phy_interface_mac()->prach_send(0, -1, 0.0f); TESTASSERT(phy_test->get_radio()->wait_tx(default_timeout, false)); // 4. Configure RNTI with PUCCH and check transmission uint16_t rnti = 0x3c; srslte::phy_cfg_t phy_cfg = {}; phy_cfg.set_defaults(); phy_cfg.dl_cfg.cqi_report.periodic_mode = SRSLTE_CQI_MODE_12; phy_cfg.dl_cfg.cqi_report.periodic_configured = true; phy_cfg.dl_cfg.cqi_report.pmi_idx = 0; phy_cfg.ul_cfg.pucch.n_pucch_2 = 0; phy_test->configure_dedicated(rnti, phy_cfg); TESTASSERT(phy_test->get_radio()->wait_tx(default_timeout)); // Wait to finish test phy_test->stop(); // Final test checks... TESTASSERT(!phy_test->get_radio()->get_count_late()); // No Late allowed return ret; }