/** * * \section COPYRIGHT * * Copyright 2013-2021 Software Radio Systems Limited * * By using this file, you agree to the terms and conditions set * forth in the LICENSE file which can be found at the top level of * the distribution. * */ /****************************************************************************** * File: pss.h * * Description: Primary synchronization signal (PSS) generation and detection. * * The srsran_pss_t object provides functions for fast * computation of the crosscorrelation between the PSS and received * signal and CFO estimation. Also, the function srsran_pss_tperiodic() * is designed to be called periodically every subframe, taking * care of the correct data alignment with respect to the PSS sequence. * * The object is designed to work with signals sampled at 1.92 Mhz * centered at the carrier frequency. Thus, downsampling is required * if the signal is sampled at higher frequencies. * * Reference: 3GPP TS 36.211 version 10.0.0 Release 10 Sec. 6.11.1 *****************************************************************************/ #ifndef SRSRAN_PSS_H #define SRSRAN_PSS_H #include #include #include "srsran/config.h" #include "srsran/phy/common/phy_common.h" #include "srsran/phy/utils/convolution.h" #include "srsran/phy/utils/filter.h" #define CONVOLUTION_FFT #define SRSRAN_PSS_LEN 62 #define SRSRAN_PSS_RE (6 * 12) /* PSS processing options */ #define SRSRAN_PSS_ACCUMULATE_ABS // If enabled, accumulates the correlation absolute value on consecutive calls to // srsran_pss_find_pss #define SRSRAN_PSS_RETURN_PSR // If enabled returns peak to side-lobe ratio, otherwise returns absolute peak value /* Low-level API */ typedef struct SRSRAN_API { #ifdef CONVOLUTION_FFT srsran_conv_fft_cc_t conv_fft; srsran_filt_cc_t filter; #endif int decimate; uint32_t max_frame_size; uint32_t max_fft_size; uint32_t frame_size; uint32_t N_id_2; uint32_t fft_size; cf_t* pss_signal_freq_full[3]; cf_t* pss_signal_time[3]; cf_t* pss_signal_time_scale[3]; cf_t pss_signal_freq[3][SRSRAN_PSS_LEN]; // One sequence for each N_id_2 cf_t* tmp_input; cf_t* conv_output; float* conv_output_abs; float ema_alpha; float* conv_output_avg; float peak_value; bool filter_pss_enable; srsran_dft_plan_t dftp_input; srsran_dft_plan_t idftp_input; cf_t tmp_fft[SRSRAN_SYMBOL_SZ_MAX]; cf_t tmp_fft2[SRSRAN_SYMBOL_SZ_MAX]; cf_t tmp_ce[SRSRAN_PSS_LEN]; bool chest_on_filter; } srsran_pss_t; typedef enum { PSS_TX, PSS_RX } pss_direction_t; /* Basic functionality */ SRSRAN_API int srsran_pss_init_fft(srsran_pss_t* q, uint32_t frame_size, uint32_t fft_size); SRSRAN_API int srsran_pss_init_fft_offset(srsran_pss_t* q, uint32_t frame_size, uint32_t fft_size, int cfo_i); SRSRAN_API int srsran_pss_init_fft_offset_decim(srsran_pss_t* q, uint32_t frame_size, uint32_t fft_size, int cfo_i, int decimate); SRSRAN_API int srsran_pss_resize(srsran_pss_t* q, uint32_t frame_size, uint32_t fft_size, int offset); SRSRAN_API int srsran_pss_init(srsran_pss_t* q, uint32_t frame_size); SRSRAN_API void srsran_pss_free(srsran_pss_t* q); SRSRAN_API void srsran_pss_reset(srsran_pss_t* q); SRSRAN_API void srsran_pss_filter_enable(srsran_pss_t* q, bool enable); SRSRAN_API void srsran_pss_sic(srsran_pss_t* q, cf_t* input); SRSRAN_API void srsran_pss_filter(srsran_pss_t* q, const cf_t* input, cf_t* output); SRSRAN_API int srsran_pss_generate(cf_t* signal, uint32_t N_id_2); SRSRAN_API void srsran_pss_get_slot(cf_t* slot, cf_t* pss_signal, uint32_t nof_prb, srsran_cp_t cp); SRSRAN_API void srsran_pss_put_slot(cf_t* pss_signal, cf_t* slot, uint32_t nof_prb, srsran_cp_t cp); SRSRAN_API void srsran_pss_set_ema_alpha(srsran_pss_t* q, float alpha); SRSRAN_API int srsran_pss_set_N_id_2(srsran_pss_t* q, uint32_t N_id_2); SRSRAN_API int srsran_pss_find_pss(srsran_pss_t* q, const cf_t* input, float* corr_peak_value); SRSRAN_API int srsran_pss_chest(srsran_pss_t* q, const cf_t* input, cf_t ce[SRSRAN_PSS_LEN]); SRSRAN_API float srsran_pss_cfo_compute(srsran_pss_t* q, const cf_t* pss_recv); #endif // SRSRAN_PSS_H