/* * Copyright 2013-2020 Software Radio Systems Limited * * This file is part of srsLTE. * * srsLTE is free software: you can redistribute it and/or modify * it under the terms of the GNU Affero General Public License as * published by the Free Software Foundation, either version 3 of * the License, or (at your option) any later version. * * srsLTE is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Affero General Public License for more details. * * A copy of the GNU Affero General Public License can be found in * the LICENSE file in the top-level directory of this distribution * and at http://www.gnu.org/licenses/. * */ #include "srslte/common/fsm.h" #include "srslte/common/test_common.h" ///////////////////////////// // Events struct ev1 {}; struct ev2 {}; class fsm1 : public srslte::fsm_t { public: uint32_t idle_enter_counter = 0, state1_enter_counter = 0, inner_enter_counter = 0; uint32_t foo_counter = 0; // states struct idle_st {}; struct state1 {}; explicit fsm1(srslte::log_ref log_) : srslte::fsm_t(log_) {} // this state is another FSM class fsm2 : public subfsm_t { public: // states struct state_inner {}; struct state_inner2 {}; explicit fsm2(fsm1* f_) : nested_fsm_t(f_) {} ~fsm2() { log_h->info("%s being destroyed!", get_type_name(*this).c_str()); } protected: void enter(state_inner& s) { log_h->info("fsm1::%s::enter called\n", srslte::get_type_name(s).c_str()); parent_fsm()->inner_enter_counter++; } void enter(state_inner2& s) { log_h->info("fsm1::%s::enter called\n", srslte::get_type_name(s).c_str()); } void exit(state_inner2& s) { log_h->info("fsm1::%s::exit called\n", srslte::get_type_name(s).c_str()); } // FSM2 transitions auto react(state_inner& s, ev1 e) -> to_state; auto react(state_inner& s, ev2 e) -> to_state; auto react(state_inner2& s, ev2 e) -> to_state; // list of states state_list states{this}; }; protected: // enter/exit template void enter(State& s) { log_h->info("%s::enter called\n", srslte::get_type_name(s).c_str()); } template void exit(State& s) { log_h->info("%s::exit called\n", srslte::get_type_name(s).c_str()); } void enter(idle_st& s); void enter(state1& s); // transitions auto react(idle_st& s, ev1 e) -> srslte::to_state; auto react(state1& s, ev1 e) -> srslte::to_state; auto react(state1& s, ev2 e) -> srslte::to_states; void foo(ev1 e) { foo_counter++; } // list of states state_list states = {this, idle_st{}, state1{}, fsm2{this}}; }; void fsm1::enter(idle_st& s) { log_h->info("%s::enter custom called\n", srslte::get_type_name(s).c_str()); idle_enter_counter++; } void fsm1::enter(state1& s) { log_h->info("%s::enter custom called\n", srslte::get_type_name(s).c_str()); state1_enter_counter++; } // FSM event handlers auto fsm1::fsm2::react(state_inner& s, ev1) -> to_state { log_h->info("fsm2::state_inner::react called\n"); return {}; } auto fsm1::fsm2::react(state_inner& s, ev2) -> to_state { log_h->info("fsm2::state_inner::react called\n"); return {}; } auto fsm1::fsm2::react(state_inner2& s, ev2) -> to_state { log_h->info("fsm2::state_inner::react called\n"); return {}; } auto fsm1::react(idle_st& s, ev1 e) -> to_state { log_h->info("%s::react called\n", srslte::get_type_name(s).c_str()); foo(e); return {}; } auto fsm1::react(state1& s, ev1) -> to_state { log_h->info("%s::react called\n", srslte::get_type_name(s).c_str()); return {}; } auto fsm1::react(state1& s, ev2) -> srslte::to_states { log_h->info("%s::react called\n", srslte::get_type_name(s).c_str()); return srslte::to_state{}; } // Static Checks namespace srslte { namespace fsm_details { static_assert(is_fsm(), "invalid metafunction\n"); static_assert(is_subfsm(), "invalid metafunction\n"); static_assert(std::is_same, fsm1::state_list >::value, "get state list failed\n"); static_assert(fsm1::can_hold_state(), "failed can_hold_state check\n"); static_assert(std::is_same, void>::value, "get state list failed\n"); static_assert(std::is_same, void>::value, "get state list failed\n"); } // namespace fsm_details } // namespace srslte // Runtime checks int test_hsm() { srslte::log_ref log_h{"HSM"}; log_h->set_level(srslte::LOG_LEVEL_INFO); fsm1 f{log_h}; TESTASSERT(f.idle_enter_counter == 1); TESTASSERT(get_type_name(f) == "fsm1"); TESTASSERT(f.current_state_name() == "idle_st"); TESTASSERT(f.is_in_state()); TESTASSERT(f.foo_counter == 0); // Moving Idle -> State1 ev1 e; f.trigger(e); TESTASSERT(f.current_state_name() == "state1"); TESTASSERT(f.is_in_state()); // Moving State1 -> fsm2 f.trigger(e); TESTASSERT(f.current_state_name() == "fsm2"); TESTASSERT(f.is_in_state()); TESTASSERT(f.get_if_current_state()->current_state_name() == "state_inner"); TESTASSERT(f.inner_enter_counter == 1); // Fsm2 does not listen to ev1 f.trigger(e); TESTASSERT(f.current_state_name() == "fsm2"); TESTASSERT(f.is_in_state()); TESTASSERT(f.get_if_current_state()->current_state_name() == "state_inner"); // Fsm2 state_inner -> state_inner2 f.trigger(ev2{}); TESTASSERT(f.current_state_name() == "fsm2"); TESTASSERT(f.is_in_state()); TESTASSERT(f.get_if_current_state()->current_state_name() == "state_inner2"); // Moving fsm2 -> state1 f.trigger(ev2{}); TESTASSERT(f.current_state_name() == "state1"); TESTASSERT(f.is_in_state()); TESTASSERT(f.state1_enter_counter == 2); // Moving state1 -> idle f.trigger(ev2{}); TESTASSERT(std::string{f.current_state_name()} == "idle_st"); TESTASSERT(f.is_in_state()); TESTASSERT(f.foo_counter == 1); TESTASSERT(f.idle_enter_counter == 2); // Call unhandled event f.trigger(ev2{}); TESTASSERT(f.current_state_name() == "idle_st"); // Enter fsm2 again f.trigger(ev1{}); f.trigger(ev1{}); TESTASSERT(f.current_state_name() == "fsm2"); TESTASSERT(f.is_in_state()); TESTASSERT(f.get_if_current_state()->current_state_name() == "state_inner"); return SRSLTE_SUCCESS; } ///////////////////////////// struct procevent1 {}; struct procevent2 {}; struct proc1 : public srslte::proc_fsm_t { public: struct procstate1 {}; proc1(srslte::log_ref log_) : base_t(log_) {} protected: // Transitions auto react(idle_st& s, srslte::proc_launch_ev ev) -> to_state; auto react(procstate1& s, procevent1 ev) -> to_state; auto react(procstate1& s, procevent2 ev) -> to_state; auto react(complete_st& s, reset_ev ev) -> to_state; // example of uncaught event handling template to_state react(State& s, int e) { log_h->info("I dont know how to handle an \"int\" event\n"); return {}; } state_list states{this, idle_st{}, procstate1{}, complete_st{}}; }; auto proc1::react(idle_st& s, srslte::proc_launch_ev ev) -> to_state { log_h->info("started!\n"); return {}; } auto proc1::react(procstate1& s, procevent1 ev) -> to_state { log_h->info("success!\n"); return set_success(5); } auto proc1::react(procstate1& s, procevent2 ev) -> to_state { log_h->info("failure!\n"); return set_failure(); } auto proc1::react(complete_st& s, reset_ev ev) -> to_state { log_h->info("propagate results %s\n", is_success() ? "success" : "failure"); if (is_success()) { log_h->info("result was %d\n", get_result()); } return {}; } int test_fsm_proc() { proc1 proc{srslte::logmap::get("PROC")}; proc.get_log()->set_level(srslte::LOG_LEVEL_INFO); proc.set_fsm_event_log_level(srslte::LOG_LEVEL_INFO); int v = 2; proc.launch(&v); proc.launch(&v); proc.trigger(5); proc.trigger(procevent1{}); proc.launch(&v); proc.trigger(procevent2{}); return SRSLTE_SUCCESS; } /////////////////////////// class nas_fsm : public srslte::fsm_t { public: // states struct emm_null_st {}; struct emm_deregistered {}; struct emm_deregistered_initiated {}; struct emm_ta_updating_initiated {}; struct emm_registered {}; struct emm_service_req_initiated {}; struct emm_registered_initiated {}; // events struct enable_s1_ev {}; struct disable_s1_ev {}; struct attach_request_ev {}; struct emm_registr_fail_ev {}; ///< attach rejected, network init DETACH request, lower layer failure struct attach_accept_ev {}; ///< attach accept and default EPS bearer context activated struct sr_initiated_ev {}; struct sr_outcome_ev {}; struct tau_request_ev {}; struct tau_outcome_ev {}; struct tau_reject_other_cause_ev {}; struct power_off_ev {}; struct detach_request_ev {}; struct detach_accept_ev {}; nas_fsm(srslte::log_ref log_) : fsm_t(log_) {} protected: auto react(emm_null_st& s, const enable_s1_ev& ev) -> to_state; auto react(emm_deregistered& s, disable_s1_ev ev) -> to_state; auto react(emm_deregistered& s, attach_request_ev ev) -> to_state; auto react(emm_registered_initiated& s, emm_registr_fail_ev ev) -> to_state; auto react(emm_registered_initiated& s, attach_accept_ev ev) -> to_state; auto react(emm_registered& s, sr_initiated_ev ev) -> to_state; auto react(emm_service_req_initiated& s, sr_outcome_ev) -> to_state; auto react(emm_registered& s, tau_request_ev ev) -> to_state; auto react(emm_registered& s, detach_request_ev ev) -> to_state; auto react(emm_ta_updating_initiated& s, tau_outcome_ev ev) -> to_state; auto react(emm_ta_updating_initiated& s, tau_reject_other_cause_ev ev) -> to_state; auto react(emm_deregistered_initiated& s, detach_accept_ev ev) -> to_state; // on power-off go to deregistered state. Disable react if we are already in deregistered template auto react(AnyState& s, power_off_ev ev) -> to_state; state_list states{nullptr}; }; #define LOGEVENT() log_h->info("Received an \"%s\" event\n", srslte::get_type_name(ev).c_str()) auto nas_fsm::react(emm_null_st& s, const enable_s1_ev& ev) -> to_state { LOGEVENT(); return {}; } auto nas_fsm::react(emm_deregistered& s, disable_s1_ev ev) -> to_state { LOGEVENT(); return {}; } auto nas_fsm::react(emm_deregistered& s, attach_request_ev ev) -> to_state { LOGEVENT(); return {}; } auto nas_fsm::react(emm_registered_initiated& s, emm_registr_fail_ev ev) -> to_state { LOGEVENT(); return {}; } auto nas_fsm::react(emm_registered_initiated& s, attach_accept_ev ev) -> to_state { LOGEVENT(); return {}; } auto nas_fsm::react(emm_registered& s, sr_initiated_ev ev) -> to_state { LOGEVENT(); return {}; } auto nas_fsm::react(emm_service_req_initiated& s, sr_outcome_ev ev) -> to_state { LOGEVENT(); return {}; } auto nas_fsm::react(emm_registered& s, tau_request_ev ev) -> to_state { LOGEVENT(); return {}; } auto nas_fsm::react(emm_registered& s, detach_request_ev ev) -> to_state { LOGEVENT(); return {}; } auto nas_fsm::react(emm_ta_updating_initiated& s, tau_outcome_ev ev) -> to_state { LOGEVENT(); return {}; } auto nas_fsm::react(emm_ta_updating_initiated& s, tau_reject_other_cause_ev ev) -> to_state { LOGEVENT(); return {}; } auto nas_fsm::react(emm_deregistered_initiated& s, detach_accept_ev ev) -> to_state { LOGEVENT(); return {}; } template auto nas_fsm::react(AnyState& s, power_off_ev ev) -> to_state { LOGEVENT(); return {}; } int test_nas_fsm() { srslte::log_ref log_h{"NAS"}; log_h->set_level(srslte::LOG_LEVEL_INFO); nas_fsm fsm{log_h}; TESTASSERT(fsm.is_in_state()); // NULL -> EMM-DEREGISTERED fsm.trigger(nas_fsm::enable_s1_ev{}); TESTASSERT(fsm.is_in_state()); // EMM-DEREGISTERED -> EMM-NULL -> EMM-DEREGISTERED fsm.trigger(nas_fsm::disable_s1_ev{}); TESTASSERT(fsm.is_in_state()); fsm.trigger(nas_fsm::enable_s1_ev{}); TESTASSERT(fsm.is_in_state()); // EMM-DEREGISTERED -> EMM-REGISTERED-INITIATED -> EMM-DEREGISTERED fsm.trigger(nas_fsm::attach_request_ev{}); TESTASSERT(fsm.is_in_state()); fsm.trigger(nas_fsm::emm_registr_fail_ev{}); TESTASSERT(fsm.is_in_state()); // EMM-DEREGISTERED -> EMM-REGISTERED-INITIATED -> EMM-REGISTERED fsm.trigger(nas_fsm::attach_request_ev{}); TESTASSERT(fsm.is_in_state()); fsm.trigger(nas_fsm::attach_accept_ev{}); TESTASSERT(fsm.is_in_state()); // EMM-REGISTERED -> EMM-SERVICE-REQUEST-INITIATED -> EMM-REGISTERED fsm.trigger(nas_fsm::sr_initiated_ev{}); TESTASSERT(fsm.is_in_state()); fsm.trigger(nas_fsm::sr_outcome_ev{}); TESTASSERT(fsm.is_in_state()); // EMM-REGISTERED -> EMM-TRACKING-AREA-UPDATING-INITIATED -> EMM-REGISTERED fsm.trigger(nas_fsm::tau_request_ev{}); TESTASSERT(fsm.is_in_state()); fsm.trigger(nas_fsm::tau_outcome_ev{}); TESTASSERT(fsm.is_in_state()); // EMM-REGISTERED -> EMM-DEREGISTED-INITIATED -> EMM-DEREGISTERED fsm.trigger(nas_fsm::detach_request_ev{}); TESTASSERT(fsm.is_in_state()); fsm.trigger(nas_fsm::detach_accept_ev{}); TESTASSERT(fsm.is_in_state()); // EMM-DEREGISTERED -> EMM-REGISTERED-INITIATED -> EMM-REGISTERED -> EMM-TRACKING-AREA-UPDATING-INITIATED -> // EMM-DEREGISTERED fsm.trigger(nas_fsm::attach_request_ev{}); TESTASSERT(fsm.is_in_state()); fsm.trigger(nas_fsm::attach_accept_ev{}); TESTASSERT(fsm.is_in_state()); fsm.trigger(nas_fsm::tau_request_ev{}); fsm.trigger(nas_fsm::tau_reject_other_cause_ev{}); TESTASSERT(fsm.is_in_state()); // EMM-DEREGISTERED -> EMM-REGISTERED-INITIATED -> EMM-REGISTERED -> EMM-SERVICE-REQUEST-INITIATED -> EMM-DEREGISTERED // (power-off) fsm.trigger(nas_fsm::attach_request_ev{}); fsm.trigger(nas_fsm::attach_accept_ev{}); fsm.trigger(nas_fsm::sr_initiated_ev{}); TESTASSERT(fsm.is_in_state()); fsm.trigger(nas_fsm::power_off_ev{}); TESTASSERT(fsm.is_in_state()); return SRSLTE_SUCCESS; } int main() { srslte::log_ref testlog{"TEST"}; testlog->set_level(srslte::LOG_LEVEL_INFO); TESTASSERT(test_hsm() == SRSLTE_SUCCESS); testlog->info("TEST \"hsm\" finished successfully\n\n"); TESTASSERT(test_fsm_proc() == SRSLTE_SUCCESS); testlog->info("TEST \"proc\" finished successfully\n\n"); TESTASSERT(test_nas_fsm() == SRSLTE_SUCCESS); testlog->info("TEST \"nas fsm\" finished successfully\n\n"); return SRSLTE_SUCCESS; }