/** * * \section COPYRIGHT * * Copyright 2013-2021 Software Radio Systems Limited * * By using this file, you agree to the terms and conditions set * forth in the LICENSE file which can be found at the top level of * the distribution. * */ #ifndef SRSRAN_GNB_INTERFACES_H #define SRSRAN_GNB_INTERFACES_H #include "srsran/srsran.h" #include "srsran/common/interfaces_common.h" #include "srsran/common/security.h" #include "srsran/interfaces/pdcp_interface_types.h" #include "srsran/interfaces/rlc_interface_types.h" #include "srsran/interfaces/rrc_interface_types.h" // EUTRA interfaces that are used unmodified #include "srsran/interfaces/enb_rrc_interfaces.h" namespace srsenb { struct sched_nr_ue_cfg_t; /***************************** * RLC INTERFACES ****************************/ class rlc_interface_mac_nr { public: /* MAC calls RLC to get RLC segment of nof_bytes length. * Segmentation happens in this function. RLC PDU is stored in payload. */ virtual int read_pdu(uint16_t rnti, uint32_t lcid, uint8_t* payload, uint32_t nof_bytes) = 0; virtual void read_pdu_pcch(uint8_t* payload, uint32_t buffer_size) = 0; /* MAC calls RLC to push an RLC PDU. This function is called from an independent MAC thread. * PDU gets placed into the buffer and higher layer thread gets notified. */ virtual void write_pdu(uint16_t rnti, uint32_t lcid, uint8_t* payload, uint32_t nof_bytes) = 0; }; class rlc_interface_pdcp_nr { public: /* PDCP calls RLC to push an RLC SDU. SDU gets placed into the RLC buffer and MAC pulls * RLC PDUs according to TB size. */ virtual void write_sdu(uint16_t rnti, uint32_t lcid, srsran::unique_byte_buffer_t sdu) = 0; virtual bool rb_is_um(uint16_t rnti, uint32_t lcid) = 0; virtual bool sdu_queue_is_full(uint16_t rnti, uint32_t lcid) = 0; }; class rlc_interface_rrc_nr { public: virtual void clear_buffer(uint16_t rnti) = 0; virtual void add_user(uint16_t rnti) = 0; virtual void rem_user(uint16_t rnti) = 0; virtual void add_bearer(uint16_t rnti, uint32_t lcid, srsran::rlc_config_t cnfg) = 0; virtual void add_bearer_mrb(uint16_t rnti, uint32_t lcid) = 0; virtual void write_sdu(uint16_t rnti, uint32_t lcid, srsran::unique_byte_buffer_t sdu) = 0; }; /***************************** * PDCP INTERFACES ****************************/ class pdcp_interface_rlc_nr { public: /* RLC calls PDCP to push a PDCP PDU. */ virtual void write_pdu(uint16_t rnti, uint32_t lcid, srsran::unique_byte_buffer_t sdu) = 0; virtual void notify_delivery(uint16_t rnti, uint32_t lcid, const srsran::pdcp_sn_vector_t& pdcp_sns) = 0; virtual void notify_failure(uint16_t rnti, uint32_t lcid, const srsran::pdcp_sn_vector_t& pdcp_sns) = 0; }; class pdcp_interface_rrc_nr { public: virtual void reset(uint16_t rnti) = 0; virtual void add_user(uint16_t rnti) = 0; virtual void rem_user(uint16_t rnti) = 0; virtual void write_sdu(uint16_t rnti, uint32_t lcid, srsran::unique_byte_buffer_t sdu) = 0; virtual void add_bearer(uint16_t rnti, uint32_t lcid, srsran::pdcp_config_t cnfg) = 0; virtual void config_security(uint16_t rnti, uint32_t lcid, const srsran::as_security_config_t& sec_cfg) = 0; virtual void enable_integrity(uint16_t rnti, uint32_t lcid) = 0; virtual void enable_encryption(uint16_t rnti, uint32_t lcid) = 0; }; class pdcp_interface_sdap_nr { public: virtual void write_sdu(uint16_t rnti, uint32_t lcid, srsran::unique_byte_buffer_t pdu) = 0; }; /***************************** * SDAP INTERFACES ****************************/ class sdap_interface_pdcp_nr { public: virtual void write_pdu(uint16_t rnti, uint32_t lcid, srsran::unique_byte_buffer_t pdu) = 0; }; class sdap_interface_gtpu_nr { public: virtual void write_sdu(uint16_t rnti, uint32_t lcid, srsran::unique_byte_buffer_t pdu) = 0; }; /***************************** * GTPU INTERFACES ****************************/ class gtpu_interface_rrc_nr { public: }; class gtpu_interface_sdap_nr { public: virtual void write_pdu(uint16_t rnti, uint32_t lcid, srsran::unique_byte_buffer_t pdu) = 0; }; /***************************** * MAC internal INTERFACES ****************************/ class mac_interface_pdu_demux_nr { public: // Called by PDU handler from Stack thread to store Msg3 content (According to O-RAN WG8 v3.0, Sec. 9.2.2.3.5 MAC) virtual void store_msg3(uint16_t rnti, srsran::unique_byte_buffer_t pdu) = 0; }; /***************************** * RRC INTERFACES ****************************/ class rrc_interface_phy_nr {}; class rrc_interface_mac_nr { public: // Provides MIB packed message virtual int read_pdu_bcch_bch(const uint32_t tti, srsran::byte_buffer_t& buffer) = 0; virtual int read_pdu_bcch_dlsch(uint32_t sib_index, srsran::byte_buffer_t& buffer) = 0; /// User management virtual int add_user(uint16_t rnti, const sched_nr_ue_cfg_t& uecfg) = 0; virtual int update_user(uint16_t new_rnti, uint16_t old_rnti) = 0; virtual void set_activity_user(uint16_t rnti) = 0; }; // NR interface is almost identical to EUTRA version class rrc_interface_rlc_nr : public rrc_interface_rlc { public: virtual void read_pdu_pcch(uint8_t* payload, uint32_t payload_size) = 0; virtual const char* get_rb_name(uint32_t lcid) = 0; }; // NR interface identical to EUTRA version class rrc_interface_pdcp_nr : public rrc_interface_pdcp {}; class phy_interface_rrc_nr { public: /** * @brief Describes physical layer configuration common among all the UEs for a given cell */ struct common_cfg_t { srsran_carrier_nr_t carrier; srsran_pdcch_cfg_nr_t pdcch; srsran_prach_cfg_t prach; srsran_ssb_cfg_t ssb; srsran_duplex_mode_t duplex_mode; }; virtual int set_common_cfg(const common_cfg_t& common_cfg) = 0; }; class phy_interface_mac_nr { public: // TBD }; // Combined interface for stack (MAC and RRC) to access PHY class phy_interface_stack_nr : public phy_interface_rrc_nr, public phy_interface_mac_nr { public: // TBD }; class stack_interface_mac { public: ///< MAC calls stack to inform about new PDUs having arrived to be further processes in stack thread virtual void process_pdus() = 0; }; class mac_interface_phy_nr { public: const static int MAX_SSB = 4; const static int MAX_GRANTS = 4; const static int MAX_PUCCH_MSG = 64; const static int MAX_PUCCH_CANDIDATES = 2; const static int MAX_NZP_CSI_RS = 4; struct pdcch_dl_t { srsran_dci_cfg_nr_t dci_cfg = {}; srsran_dci_dl_nr_t dci = {}; }; struct pdcch_ul_t { srsran_dci_cfg_nr_t dci_cfg = {}; srsran_dci_ul_nr_t dci = {}; }; struct pdsch_t { srsran_sch_cfg_nr_t sch = {}; ///< PDSCH configuration std::array data = {}; ///< Data pointer }; struct ssb_t { srsran_pbch_msg_nr_t pbch_msg = {}; }; struct dl_sched_t { srsran::bounded_vector ssb; srsran::bounded_vector pdcch_dl; srsran::bounded_vector pdcch_ul; srsran::bounded_vector pdsch; srsran::bounded_vector nzp_csi_rs; }; struct pusch_t { uint32_t pid = 0; ///< HARQ process ID srsran_sch_cfg_nr_t sch = {}; ///< PUSCH configuration }; /** * @brief Describes a possible PUCCH candidate transmission * @note The physical layer shall try decoding all the possible PUCCH candidates and report back to the stack the * strongest of the candidates. This is thought to be used in the case of SR opportunities in which the UE could * transmit HARQ-ACK in two possible resources. */ struct pucch_candidate_t { srsran_uci_cfg_nr_t uci_cfg; ///< UCI configuration for the opportunity srsran_pucch_nr_resource_t resource; ///< PUCCH resource to use }; struct pucch_t { srsran_pucch_nr_common_cfg_t pucch_cfg; ///< UE dedicated PUCCH configuration srsran::bounded_vector candidates; ///< PUCCH candidates to decode }; struct ul_sched_t { srsran::bounded_vector pusch; srsran::bounded_vector pucch; }; struct pucch_info_t { srsran_uci_data_nr_t uci_data; ///< RNTI is available under cfg->pucch->rnti srsran_csi_trs_measurements_t csi; ///< DMRS based signal Channel State Information (CSI) }; struct pusch_info_t { // Context uint16_t rnti; ///< UE temporal identifier uint32_t pid = 0; ///< HARQ process ID // SCH and UCI payload information srsran_pusch_res_nr_t pusch_data; srsran_uci_cfg_nr_t uci_cfg; ///< Provides UCI configuration, so stack does not need to keep the pending state // Actual SCH PDU srsran::unique_byte_buffer_t pdu = nullptr; // PUSCH signal measurements srsran_csi_trs_measurements_t csi; ///< DMRS based signal Channel State Information (CSI) }; struct rach_info_t { uint32_t slot_index; uint32_t preamble; uint32_t time_adv; }; virtual int slot_indication(const srsran_slot_cfg_t& slot_cfg) = 0; virtual dl_sched_t* get_dl_sched(const srsran_slot_cfg_t& slot_cfg) = 0; virtual ul_sched_t* get_ul_sched(const srsran_slot_cfg_t& slot_cfg) = 0; virtual int pucch_info(const srsran_slot_cfg_t& slot_cfg, const pucch_info_t& pucch_info) = 0; virtual int pusch_info(const srsran_slot_cfg_t& slot_cfg, pusch_info_t& pusch_info) = 0; virtual void rach_detected(const rach_info_t& rach_info) = 0; }; class stack_interface_phy_nr : public mac_interface_phy_nr {}; } // namespace srsenb #endif // SRSRAN_GNB_INTERFACES_H