/** * * \section COPYRIGHT * * Copyright 2013-2015 Software Radio Systems Limited * * \section LICENSE * * This file is part of the srsUE library. * * srsUE is free software: you can redistribute it and/or modify * it under the terms of the GNU Affero General Public License as * published by the Free Software Foundation, either version 3 of * the License, or (at your option) any later version. * * srsUE is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Affero General Public License for more details. * * A copy of the GNU Affero General Public License can be found in * the LICENSE file in the top-level directory of this distribution * and at http://www.gnu.org/licenses/. * */ #include "ue.h" #include "srslte/srslte.h" #include #include #include #include #include using namespace srslte; namespace srsue{ ue::ue() :started(false) { pool = byte_buffer_pool::get_instance(); } ue::~ue() { byte_buffer_pool::cleanup(); } bool ue::init(all_args_t *args_) { args = args_; if (!args->log.filename.compare("stdout")) { logger = &logger_stdout; } else { logger_file.init(args->log.filename, args->log.file_max_size); logger_file.log("\n\n"); logger_file.log(get_build_string().c_str()); logger = &logger_file; } rf_log.init("RF ", logger); // Create array of pointers to phy_logs for (int i=0;iexpert.phy.nof_phy_threads;i++) { srslte::log_filter *mylog = new srslte::log_filter; char tmp[16]; sprintf(tmp, "PHY%d",i); mylog->init(tmp, logger, true); phy_log.push_back(mylog); } mac_log.init("MAC ", logger, true); rlc_log.init("RLC ", logger); pdcp_log.init("PDCP", logger); rrc_log.init("RRC ", logger); nas_log.init("NAS ", logger); gw_log.init("GW ", logger); usim_log.init("USIM", logger); // Init logs rf_log.set_level(srslte::LOG_LEVEL_INFO); rf_log.info("Starting UE\n"); for (int i=0;iexpert.phy.nof_phy_threads;i++) { ((srslte::log_filter*) phy_log[i])->set_level(level(args->log.phy_level)); } /* here we add a log layer to handle logging from the phy library*/ srslte::log_filter *lib_log = new srslte::log_filter; char tmp[16]; sprintf(tmp, "PHY_LIB"); lib_log->init(tmp, logger, true); phy_log.push_back(lib_log); ((srslte::log_filter*) phy_log[args->expert.phy.nof_phy_threads])->set_level(level(args->log.phy_lib_level)); mac_log.set_level(level(args->log.mac_level)); rlc_log.set_level(level(args->log.rlc_level)); pdcp_log.set_level(level(args->log.pdcp_level)); rrc_log.set_level(level(args->log.rrc_level)); nas_log.set_level(level(args->log.nas_level)); gw_log.set_level(level(args->log.gw_level)); usim_log.set_level(level(args->log.usim_level)); for (int i=0;iexpert.phy.nof_phy_threads + 1;i++) { ((srslte::log_filter*) phy_log[i])->set_hex_limit(args->log.phy_hex_limit); } mac_log.set_hex_limit(args->log.mac_hex_limit); rlc_log.set_hex_limit(args->log.rlc_hex_limit); pdcp_log.set_hex_limit(args->log.pdcp_hex_limit); rrc_log.set_hex_limit(args->log.rrc_hex_limit); nas_log.set_hex_limit(args->log.nas_hex_limit); gw_log.set_hex_limit(args->log.gw_hex_limit); usim_log.set_hex_limit(args->log.usim_hex_limit); // Set up pcap and trace if(args->pcap.enable) { mac_pcap.open(args->pcap.filename.c_str()); mac.start_pcap(&mac_pcap); } if(args->pcap.nas_enable) { nas_pcap.open(args->pcap.nas_filename.c_str()); nas.start_pcap(&nas_pcap); } if(args->trace.enable) { phy.start_trace(); radio.start_trace(); } // Init layers // PHY inits in background, start before radio args->expert.phy.nof_rx_ant = args->rf.nof_rx_ant; phy.init(&radio, &mac, &rrc, phy_log, &args->expert.phy); /* Start Radio */ char *dev_name = NULL; if (args->rf.device_name.compare("auto")) { dev_name = (char*) args->rf.device_name.c_str(); } char *dev_args = NULL; if (args->rf.device_args.compare("auto")) { dev_args = (char*) args->rf.device_args.c_str(); } printf("Opening RF device with %d RX antennas...\n", args->rf.nof_rx_ant); if(!radio.init_multi(args->rf.nof_rx_ant, dev_args, dev_name)) { printf("Failed to find device %s with args %s\n", args->rf.device_name.c_str(), args->rf.device_args.c_str()); return false; } // Set RF options if (args->rf.time_adv_nsamples.compare("auto")) { radio.set_tx_adv(atoi(args->rf.time_adv_nsamples.c_str())); } if (args->rf.burst_preamble.compare("auto")) { radio.set_burst_preamble(atof(args->rf.burst_preamble.c_str())); } radio.set_manual_calibration(&args->rf_cal); // Set PHY options if (args->rf.tx_gain > 0) { args->expert.phy.ul_pwr_ctrl_en = false; } else { args->expert.phy.ul_pwr_ctrl_en = true; } if (args->rf.rx_gain < 0) { radio.start_agc(false); } else { radio.set_rx_gain(args->rf.rx_gain); } if (args->rf.tx_gain > 0) { radio.set_tx_gain(args->rf.tx_gain); } else { radio.set_tx_gain(args->rf.rx_gain); std::cout << std::endl << "Warning: TX gain was not set. " << "Using open-loop power control (not working properly)" << std::endl << std::endl; } radio.register_error_handler(rf_msg); radio.set_freq_offset(args->rf.freq_offset); mac.init(&phy, &rlc, &rrc, &mac_log); rlc.init(&pdcp, &rrc, this, &rlc_log, &mac, 0 /* RB_ID_SRB0 */); pdcp.init(&rlc, &rrc, &gw, &pdcp_log, 0 /* RB_ID_SRB0 */, SECURITY_DIRECTION_UPLINK); usim.init(&args->usim, &usim_log); nas.init(&usim, &rrc, &gw, &nas_log, 1 /* RB_ID_SRB1 */); gw.init(&pdcp, &nas, &gw_log, 3 /* RB_ID_DRB1 */); gw.set_netmask(args->expert.ip_netmask); rrc.init(&phy, &mac, &rlc, &pdcp, &nas, &usim, &mac, &rrc_log); // Get current band from provided EARFCN args->rrc.supported_bands[0] = srslte_band_get_band(args->rf.dl_earfcn); args->rrc.nof_supported_bands = 1; args->rrc.ue_category = atoi(args->ue_category_str.c_str()); rrc.set_args(&args->rrc); // Currently EARFCN list is set to only one frequency as indicated in ue.conf std::vector earfcn_list; earfcn_list.push_back(args->rf.dl_earfcn); phy.set_earfcn(earfcn_list); if (args->rf.dl_freq > 0 && args->rf.ul_freq > 0) { phy.force_freq(args->rf.dl_freq, args->rf.ul_freq); } printf("Waiting PHY to initialize...\n"); phy.wait_initialize(); phy.configure_ul_params(); // Enable AGC once PHY is initialized if (args->rf.rx_gain < 0) { phy.set_agc_enable(true); } printf("...\n"); nas.attach_request(); started = true; return true; } void ue::pregenerate_signals(bool enable) { phy.enable_pregen_signals(enable); } void ue::stop() { if(started) { usim.stop(); nas.stop(); rrc.stop(); // Caution here order of stop is very important to avoid locks // Stop RLC and PDCP before GW to avoid locking on queue rlc.stop(); pdcp.stop(); gw.stop(); // PHY must be stopped before radio otherwise it will lock on rf_recv() mac.stop(); phy.stop(); radio.stop(); usleep(1e5); if(args->pcap.enable) { mac_pcap.close(); } if(args->pcap.nas_enable) { nas_pcap.close(); } if(args->trace.enable) { phy.write_trace(args->trace.phy_filename); radio.write_trace(args->trace.radio_filename); } started = false; } } bool ue::is_attached() { return (RRC_STATE_CONNECTED == rrc.get_state()); } void ue::start_plot() { phy.start_plot(); } bool ue::get_metrics(ue_metrics_t &m) { m.rf = rf_metrics; bzero(&rf_metrics, sizeof(rf_metrics_t)); rf_metrics.rf_error = false; // Reset error flag if(EMM_STATE_REGISTERED == nas.get_state()) { if(RRC_STATE_CONNECTED == rrc.get_state()) { phy.get_metrics(m.phy); mac.get_metrics(m.mac); rlc.get_metrics(m.rlc); gw.get_metrics(m.gw); return true; } } return false; } void ue::radio_overflow() { phy.radio_overflow(); } void ue::rf_msg(srslte_rf_error_t error) { ue_base *ue = ue_base::get_instance(LTE); ue->handle_rf_msg(error); if(error.type == srslte_rf_error_t::SRSLTE_RF_ERROR_OVERFLOW) { ue->radio_overflow(); } } } // namespace srsue