/** * Copyright 2013-2021 Software Radio Systems Limited * * This file is part of srsRAN. * * srsRAN is free software: you can redistribute it and/or modify * it under the terms of the GNU Affero General Public License as * published by the Free Software Foundation, either version 3 of * the License, or (at your option) any later version. * * srsRAN is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Affero General Public License for more details. * * A copy of the GNU Affero General Public License can be found in * the LICENSE file in the top-level directory of this distribution * and at http://www.gnu.org/licenses/. * */ #include "sched_test_utils.h" #include "srsenb/hdr/stack/mac/sched_lte_common.h" #include "srsenb/hdr/stack/mac/sched_phy_ch/sched_dci.h" #include "srsran/common/common_lte.h" #include "srsran/common/test_common.h" namespace srsenb { struct tbs_test_args { bool verbose = false; bool is_ul = false; bool use_tbs_index_alt = false; bool ul64qam_enabled = false; uint32_t cqi = 5; uint32_t max_mcs = 28; uint32_t prb_grant_size = 1; int req_bytes = std::numeric_limits::max(); tti_point tti_tx_dl{0}; uint32_t get_max_Qm() const { if (is_ul) { return ul64qam_enabled ? 6 : 4; } return use_tbs_index_alt ? 8 : 6; } float get_max_coderate() const { if (is_ul) { return srsran_cqi_to_coderate(std::min(cqi + 1u, 15u), false); } return srsran_cqi_to_coderate(std::min(cqi + 1u, 15u), use_tbs_index_alt); } }; bool lower_coderate(tbs_info tb, uint32_t nof_re, const tbs_test_args& args) { float max_coderate = srsran_cqi_to_coderate(std::min(args.cqi + 1u, 15u), args.use_tbs_index_alt); float coderate = srsran_coderate(tb.tbs_bytes * 8, nof_re); if (coderate > max_coderate) { return false; } srsran_mod_t mod = (args.is_ul) ? srsran_ra_ul_mod_from_mcs(tb.mcs) : srsran_ra_dl_mod_from_mcs(tb.mcs, args.use_tbs_index_alt); float Qm = std::min(args.get_max_Qm(), srsran_mod_bits_x_symbol(mod)); return coderate <= 0.932f * Qm; } int test_mcs_tbs_dl_helper(const sched_cell_params_t& cell_params, const tbs_test_args& args, tbs_info* result) { srsran_dci_dl_t dci; dci.format = SRSRAN_DCI_FORMAT1; dci.alloc_type = SRSRAN_RA_ALLOC_TYPE0; rbgmask_t rbgmask(cell_params.nof_rbgs); rbgmask.fill(0, cell_params.nof_prbs_to_rbgs(args.prb_grant_size)); dci.type0_alloc.rbg_bitmask = (uint32_t)rbgmask.to_uint64(); uint32_t nof_re = cell_params.get_dl_nof_res(args.tti_tx_dl, dci, 1); float max_coderate = args.get_max_coderate(); if (srsran_coderate(16, nof_re) > max_coderate) { // no solution is possible return SRSRAN_SUCCESS; } // Verify MCS, TBS tbs_info ret = compute_mcs_and_tbs( args.prb_grant_size, nof_re, args.cqi, args.max_mcs, args.is_ul, args.ul64qam_enabled, args.use_tbs_index_alt); if (ret.tbs_bytes < 0) { return SRSRAN_SUCCESS; } if (result != nullptr) { *result = ret; } CONDERROR(ret.mcs > (int)args.max_mcs, "Result mcs=%d is higher than stipulated max_mcs=%d", ret.mcs, args.max_mcs); // Verify TBS is a valid value in TS tables uint32_t tbs_idx = srsran_ra_tbs_idx_from_mcs(ret.mcs, args.use_tbs_index_alt, args.is_ul); int expected_tbs = srsran_ra_tbs_from_idx(tbs_idx, args.prb_grant_size); CONDERROR(expected_tbs != ret.tbs_bytes * 8, "The tbs=%d is not valid. For {mcs=%d,tbs_idx=%d,nof_re=%d,nof_prb=%d}, it should have been tbs=%d", ret.tbs_bytes * 8, ret.mcs, tbs_idx, nof_re, args.prb_grant_size, expected_tbs); // Verify coderate doesn't surpass maximum CONDERROR(not lower_coderate(ret, nof_re, args), "Coderate is higher than maximum"); // Verify there were no better {mcs,tbs} solutions tbs_info tb2; for (tb2.mcs = ret.mcs + 1; tb2.mcs <= (int)args.max_mcs; ++tb2.mcs) { int tbs_idx2 = srsran_ra_tbs_idx_from_mcs(tb2.mcs, args.use_tbs_index_alt, args.is_ul); tb2.tbs_bytes = srsran_ra_tbs_from_idx(tbs_idx2, args.prb_grant_size) / 8U; TESTASSERT(not lower_coderate(tb2, nof_re, args) or (args.prb_grant_size == 1 and tb2.mcs == 6)); } // log results if (args.verbose) { printf("input={max_mcs=%d,cqi=%d,nof_prb=%d,nof_re=%d} -> output={mcs=%d, tbs=%d, tbs_index=%d}\n", args.max_mcs, args.cqi, args.prb_grant_size, nof_re, ret.mcs, ret.tbs_bytes * 8, tbs_idx); } return SRSRAN_SUCCESS; } int assert_mcs_tbs_result(uint32_t cell_nof_prb, uint32_t cqi, uint32_t prb_grant_size, uint32_t tbs, uint32_t mcs, bool alt_cqi_table = false) { sched_cell_params_t cell_params = {}; sched_interface::cell_cfg_t cell_cfg = generate_default_cell_cfg(cell_nof_prb); sched_interface::sched_args_t sched_args = {}; cell_params.set_cfg(0, cell_cfg, sched_args); tbs_test_args args; args.verbose = true; args.cqi = cqi; args.prb_grant_size = prb_grant_size; args.use_tbs_index_alt = alt_cqi_table; if (alt_cqi_table) { args.max_mcs = std::min(args.max_mcs, 27U); // limited to 27 for 256-QAM } tbs_info expected_result; TESTASSERT(test_mcs_tbs_dl_helper(cell_params, args, &expected_result) == SRSRAN_SUCCESS); CONDERROR(expected_result != tbs_info(tbs / 8, mcs), "TBS computation failure. {%d, %d}!={%d, %d}", expected_result.tbs_bytes * 8, expected_result.mcs, tbs, mcs); return SRSRAN_SUCCESS; } int test_mcs_lookup_specific() { /* TEST CASE: DL, no 256-QAM */ // cqi=5,Nprb=1 -> {mcs=3, tbs_idx=3, tbs=40} TESTASSERT(assert_mcs_tbs_result(6, 5, 1, 40, 3) == SRSRAN_SUCCESS); TESTASSERT(assert_mcs_tbs_result(6, 5, 4, 256, 4) == SRSRAN_SUCCESS); TESTASSERT(assert_mcs_tbs_result(100, 9, 1, 712, 28) == SRSRAN_SUCCESS); TESTASSERT(assert_mcs_tbs_result(100, 10, 10, 5736, 25) == SRSRAN_SUCCESS); // cqi=15 TESTASSERT(assert_mcs_tbs_result(6, 15, 1, 336, 19) == SRSRAN_SUCCESS); // I_tbs=17 TESTASSERT(assert_mcs_tbs_result(6, 15, 6, 2152, 19) == SRSRAN_SUCCESS); // I_tbs=17 TESTASSERT(assert_mcs_tbs_result(100, 15, 1, 712, 28) == SRSRAN_SUCCESS); // I_tbs=26 TESTASSERT(assert_mcs_tbs_result(100, 15, 2, 1480, 28) == SRSRAN_SUCCESS); // I_tbs=26 TESTASSERT(assert_mcs_tbs_result(100, 15, 10, 7480, 28) == SRSRAN_SUCCESS); // I_tbs=26 TESTASSERT(assert_mcs_tbs_result(100, 15, 1, 968, 27, true) == SRSRAN_SUCCESS); return SRSRAN_SUCCESS; } /// Verify consistency of MCS,TBS computation for different permutations of banwidths, grant sizes, cqi, max_mcs int test_mcs_tbs_consistency_all() { sched_interface::sched_args_t sched_args = {}; for (auto& nof_prb_cell : srsran::lte_cell_nof_prbs) { sched_interface::cell_cfg_t cell_cfg = generate_default_cell_cfg(nof_prb_cell); sched_cell_params_t cell_params = {}; cell_params.set_cfg(0, cell_cfg, sched_args); for (uint32_t prb_grant = 1; prb_grant < nof_prb_cell; ++prb_grant) { for (uint32_t cqi = 1; cqi < 15; ++cqi) { for (uint32_t max_mcs = 1; max_mcs <= 28; ++max_mcs) { tbs_test_args args; args.tti_tx_dl = tti_point{1}; args.prb_grant_size = prb_grant; args.cqi = cqi; args.max_mcs = max_mcs; TESTASSERT(test_mcs_tbs_dl_helper(cell_params, args, nullptr) == SRSRAN_SUCCESS); } } } } return SRSRAN_SUCCESS; } /** * Note: assumes lowest bound for nof of REs */ int test_min_mcs_tbs_dl_helper(const sched_cell_params_t& cell_params, const tbs_test_args& args, tbs_info* result) { uint32_t nof_re = cell_params.get_dl_lb_nof_re(args.tti_tx_dl, args.prb_grant_size); *result = compute_min_mcs_and_tbs_from_required_bytes(args.prb_grant_size, nof_re, args.cqi, args.max_mcs, args.req_bytes, args.is_ul, args.ul64qam_enabled, args.use_tbs_index_alt); tbs_info tb_max; TESTASSERT(test_mcs_tbs_dl_helper(cell_params, args, &tb_max) == SRSRAN_SUCCESS); CONDERROR(tb_max.mcs < result->mcs or tb_max.tbs_bytes < result->tbs_bytes, "Invalid min MCS calculation"); if (args.verbose) { printf("Min: {tbs=%d, mcs=%d}. Max: {tbs=%d, mcs=%d}. Required tbs was %d\n", result->tbs_bytes * 8, result->mcs, tb_max.tbs_bytes * 8, tb_max.mcs, args.req_bytes * 8); } return SRSRAN_SUCCESS; } /// Test search for minimum MCS/TBS in TS 36.213 table 7.1.7.2.1-1 that fulfills a TBS >= required bytes int test_min_mcs_tbs_specific() { printf("--- Min MCS test ---\n"); sched_cell_params_t cell_params = {}; sched_interface::cell_cfg_t cell_cfg = generate_default_cell_cfg(100); sched_interface::sched_args_t sched_args = {}; cell_params.set_cfg(0, cell_cfg, sched_args); tbs_test_args args; args.verbose = true; tbs_info result; args.cqi = 10; args.prb_grant_size = 5; args.req_bytes = 10; TESTASSERT(test_min_mcs_tbs_dl_helper(cell_params, args, &result) == SRSRAN_SUCCESS); CONDERROR(result.tbs_bytes < (int)args.req_bytes, "Invalid MCS calculation"); CONDERROR(result.tbs_bytes * 8 != 120, "Invalid min TBS calculation"); args.req_bytes = 50; TESTASSERT(test_min_mcs_tbs_dl_helper(cell_params, args, &result) == SRSRAN_SUCCESS); CONDERROR(result.tbs_bytes < (int)args.req_bytes, "Invalid MCS calculation"); CONDERROR(result.tbs_bytes * 8 != 424, "Invalid min TBS calculation"); args.cqi = 15; args.prb_grant_size = 10; args.req_bytes = 100; TESTASSERT(test_min_mcs_tbs_dl_helper(cell_params, args, &result) == SRSRAN_SUCCESS); CONDERROR(result.tbs_bytes < (int)args.req_bytes, "Invalid MCS calculation"); CONDERROR(result.tbs_bytes * 8 != 872, "Invalid min TBS calculation"); // Check equality case args.req_bytes = 109; TESTASSERT(test_min_mcs_tbs_dl_helper(cell_params, args, &result) == SRSRAN_SUCCESS); CONDERROR(result.tbs_bytes < (int)args.req_bytes, "Invalid MCS calculation"); CONDERROR(result.tbs_bytes * 8 != 872, "Invalid min TBS calculation"); return SRSRAN_SUCCESS; } void test_ul_mcs_tbs_derivation() { uint32_t cqi = 15; uint32_t max_mcs = 28; sched_cell_params_t cell_params; prbmask_t prbs; auto compute_tbs_mcs = [&prbs, &cell_params, &max_mcs, &cqi](uint32_t Nprb, uint32_t prb_grant_size) { sched_interface::cell_cfg_t cell_cfg = generate_default_cell_cfg(Nprb); sched_interface::sched_args_t sched_args = {}; cell_params.set_cfg(0, cell_cfg, sched_args); prbs.resize(Nprb); prbs.fill(2, prb_grant_size); uint32_t req_bytes = 1000000; uint32_t N_srs = 0; uint32_t nof_symb = 2 * (SRSRAN_CP_NSYMB(cell_params.cfg.cell.cp) - 1) - N_srs; uint32_t nof_re = nof_symb * prbs.count() * SRSRAN_NRE; return compute_min_mcs_and_tbs_from_required_bytes( prbs.count(), nof_re, cqi, max_mcs, req_bytes, true, false, false); }; cqi = 0; TESTASSERT(compute_tbs_mcs(25, 25 - 4).mcs == 0); TESTASSERT(compute_tbs_mcs(50, 50 - 5).mcs == 0); cqi = 5; TESTASSERT(compute_tbs_mcs(25, 25 - 4).mcs == 9); TESTASSERT(compute_tbs_mcs(50, 50 - 5).mcs == 9); cqi = 15; TESTASSERT(compute_tbs_mcs(25, 25 - 4).mcs == 23); TESTASSERT(compute_tbs_mcs(50, 50 - 5).mcs == 23); TESTASSERT(compute_tbs_mcs(75, 75 - 5).mcs == 24); TESTASSERT(compute_tbs_mcs(100, 100 - 5).mcs == 23); } } // namespace srsenb int main() { auto& mac_log = srslog::fetch_basic_logger("MAC"); mac_log.set_level(srslog::basic_levels::info); auto& test_log = srslog::fetch_basic_logger("TEST"); test_log.set_level(srslog::basic_levels::info); // Start the log backend. srslog::init(); TESTASSERT(srsenb::test_mcs_lookup_specific() == SRSRAN_SUCCESS); TESTASSERT(srsenb::test_mcs_tbs_consistency_all() == SRSRAN_SUCCESS); TESTASSERT(srsenb::test_min_mcs_tbs_specific() == SRSRAN_SUCCESS); srsenb::test_ul_mcs_tbs_derivation(); printf("Success\n"); return 0; }