/* * Copyright 2013-2020 Software Radio Systems Limited * * This file is part of srsLTE. * * srsLTE is free software: you can redistribute it and/or modify * it under the terms of the GNU Affero General Public License as * published by the Free Software Foundation, either version 3 of * the License, or (at your option) any later version. * * srsLTE is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Affero General Public License for more details. * * A copy of the GNU Affero General Public License can be found in * the LICENSE file in the top-level directory of this distribution * and at http://www.gnu.org/licenses/. * */ #ifndef SRSUE_TTCN3_UE_H #define SRSUE_TTCN3_UE_H #include "lte_ttcn3_phy.h" #include "srsue/hdr/stack/ue_stack_lte.h" #include class ttcn3_ue : public phy_interface_syssim, public gw_interface_stack { public: ttcn3_ue() : tft_matcher(&log) {} virtual ~ttcn3_ue() {} int init(all_args_t args, srslte::logger* logger_, syssim_interface_phy* syssim_, const std::string tc_name_) { logger = logger_; // Init UE log log.init("UE ", logger); log.set_level(srslte::LOG_LEVEL_INFO); log.info("Built in %s mode using %s.\n", srslte_get_build_mode(), srslte_get_build_info()); // Patch args args.stack.nas.force_imsi_attach = true; args.stack.nas.eia = "1,2,3"; args.stack.nas.eea = "0,1,2,3"; // Configure default parameters args.stack.usim.algo = "xor"; args.stack.usim.imei = "356092040793011"; args.stack.usim.imsi = "001010123456789"; // Anritsu test USIM args.stack.usim.k = "000102030405060708090A0B0C0D0E0F"; // fixed as per TS 34.108 Sec. 8.2 args.stack.rrc.feature_group = 0xe6041000; args.stack.rrc.ue_category_str = SRSLTE_UE_CATEGORY_DEFAULT; args.stack.rrc.ue_category = strtol(args.stack.rrc.ue_category_str.c_str(), nullptr, 10); args.stack.rrc.nof_supported_bands = 1; args.stack.rrc.supported_bands[0] = 7; args.stack.rrc.release = 8; args.stack.rrc.mbms_service_id = -1; args.phy.dl_earfcn = "3400"; args.rf.type = "none"; args.stack.type = "lte"; args.phy.type = "lte_ttcn3"; // Instantiate layers and stack together our UE if (args.stack.type == "lte") { stack = std::unique_ptr(new ue_stack_lte()); if (!stack) { log.console("Error creating LTE stack instance.\n"); return SRSLTE_ERROR; } phy = std::unique_ptr(new srsue::lte_ttcn3_phy(logger)); if (!phy) { log.console("Error creating LTE PHY instance.\n"); return SRSLTE_ERROR; } } else { log.console("Invalid stack type %s. Supported values are [lte].\n", args.stack.type.c_str()); return SRSLTE_ERROR; } // init layers if (phy->init(args.phy, stack.get(), syssim_)) { log.console("Error initializing PHY.\n"); return SRSLTE_ERROR; } if (stack->init(args.stack, logger, phy.get(), this)) { log.console("Error initializing stack.\n"); return SRSLTE_ERROR; } return SRSLTE_SUCCESS; } void stop() { if (stack) { stack->stop(); } if (phy) { phy->stop(); } } bool switch_on() { return stack->switch_on(); } bool switch_off() { return stack->switch_off(); } bool enable_data() { return stack->enable_data(); } bool disable_data() { return stack->disable_data(); } // The interface for SYSSIM void set_cell_map(lte_ttcn3_phy::cell_list_t phy_cell_map) { phy->set_cell_map(phy_cell_map); } void new_grant_ul(const srsue::mac_interface_phy_lte::mac_grant_ul_t grant) { phy->new_grant_ul(grant); } void new_tb(const srsue::mac_interface_phy_lte::mac_grant_dl_t mac_grant, const uint8_t* data) { phy->new_tb(mac_grant, data); } void set_current_tti(uint32_t tti) { phy->set_current_tti(tti); } uint16_t get_dl_sched_rnti(uint32_t tti) { return stack->get_dl_sched_rnti(tti); } // GW interface void add_mch_port(uint32_t lcid, uint32_t port) {} void write_pdu(uint32_t lcid, srslte::unique_byte_buffer_t pdu) { log.debug_hex(pdu->msg, pdu->N_bytes, "Rx PDU (%d B) on lcid=%d\n", pdu->N_bytes, lcid); switch (test_loop_mode) { case TEST_LOOP_INACTIVE: log.warning("Test loop inactive. Dropping PDU.\n"); break; case TEST_LOOP_MODE_A_ACTIVE: log.error("Test loop mode A not implemented. Dropping PDU.\n"); break; case TEST_LOOP_MODE_B_ACTIVE: // Section 5.4.4 in TS 36.509 if (pdu_delay_timer.is_running()) { pdu_queue[lcid].push(std::move(pdu)); } else { if (pdu_delay_timer.is_valid()) { pdu_queue[lcid].push(std::move(pdu)); pdu_delay_timer.run(); // timer is already set } else { loop_back_pdu_with_tft(lcid, std::move(pdu)); } } break; case TEST_LOOP_MODE_C_ACTIVE: log.error("Test loop mode C not implemented. Dropping PDU.\n"); break; } } void write_pdu_mch(uint32_t lcid, srslte::unique_byte_buffer_t pdu) {} int setup_if_addr(uint32_t lcid, uint8_t pdn_type, uint32_t ip_addr, uint8_t* ipv6_if_id, char* err_str) { return 0; } int apply_traffic_flow_template(const uint8_t& eps_bearer_id, const uint8_t& lcid, const LIBLTE_MME_TRAFFIC_FLOW_TEMPLATE_STRUCT* tft) { return tft_matcher.apply_traffic_flow_template(eps_bearer_id, lcid, tft); } void set_test_loop_mode(const test_loop_mode_state_t mode, const uint32_t ip_pdu_delay_ms_ = 0) { test_loop_mode = mode; switch (test_loop_mode) { case TEST_LOOP_INACTIVE: // deactivate timer log.info("Deactivating Test Loop Mode\n"); pdu_delay_timer.release(); break; case TEST_LOOP_MODE_A_ACTIVE: log.error("Test loop mode A not implemented\n"); break; case TEST_LOOP_MODE_B_ACTIVE: log.info("Activating Test loop mode B with %d ms PDU delay\n", ip_pdu_delay_ms_); // only create timer if needed if (ip_pdu_delay_ms_ > 0) { pdu_delay_timer = stack->get_unique_timer(); pdu_delay_timer.set(ip_pdu_delay_ms_, [this](uint32_t tid) { timer_expired(tid); }); } break; case TEST_LOOP_MODE_C_ACTIVE: log.error("Test loop mode A not implemented\n"); break; } } void timer_expired(uint32_t timeout_id) { if (timeout_id == pdu_delay_timer.id()) { log.info("Testmode B PDU delay timer expired\n"); for (auto& bearer_pdu_queue : pdu_queue) { log.info("Delivering %zd buffered PDUs for LCID=%d\n", bearer_pdu_queue.second.size(), bearer_pdu_queue.first); while (not pdu_queue.empty()) { srslte::unique_byte_buffer_t pdu; bearer_pdu_queue.second.try_pop(&pdu); loop_back_pdu_with_tft(bearer_pdu_queue.first, std::move(pdu)); } } } } void loop_back_pdu_with_tft(uint32_t input_lcid, srslte::unique_byte_buffer_t pdu) { uint8_t output_lcid = tft_matcher.check_tft_filter_match(pdu); log.info_hex(pdu->msg, pdu->N_bytes, "Rx PDU (%d B) on lcid=%d, looping back to lcid=%d\n", pdu->N_bytes, input_lcid, output_lcid); stack->write_sdu(input_lcid, std::move(pdu), false); } private: std::unique_ptr phy; std::unique_ptr stack; // Generic logger members srslte::logger* logger = nullptr; srslte::log_filter log; // Own logger for UE test_loop_mode_state_t test_loop_mode = TEST_LOOP_INACTIVE; srslte::timer_handler::unique_timer pdu_delay_timer; std::map > pdu_queue; // A PDU queue for each DRB tft_pdu_matcher tft_matcher; all_args_t args = {}; }; #endif // SRSUE_TTCN3_UE_H