/** * * \section COPYRIGHT * * Copyright 2013-2015 Software Radio Systems Limited * * \section LICENSE * * This file is part of the srsUE library. * * srsUE is free software: you can redistribute it and/or modify * it under the terms of the GNU Affero General Public License as * published by the Free Software Foundation, either version 3 of * the License, or (at your option) any later version. * * srsUE is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Affero General Public License for more details. * * A copy of the GNU Affero General Public License can be found in * the LICENSE file in the top-level directory of this distribution * and at http://www.gnu.org/licenses/. * */ #include #include #include "srslte/srslte.h" #include "srslte/common/log.h" #include "phy/phch_worker.h" #include "phy/phch_common.h" #include "phy/phch_recv.h" #define Error(fmt, ...) if (SRSLTE_DEBUG_ENABLED) log_h->error_line(__FILE__, __LINE__, fmt, ##__VA_ARGS__) #define Warning(fmt, ...) if (SRSLTE_DEBUG_ENABLED) log_h->warning_line(__FILE__, __LINE__, fmt, ##__VA_ARGS__) #define Info(fmt, ...) if (SRSLTE_DEBUG_ENABLED) log_h->info_line(__FILE__, __LINE__, fmt, ##__VA_ARGS__) #define Debug(fmt, ...) if (SRSLTE_DEBUG_ENABLED) log_h->debug_line(__FILE__, __LINE__, fmt, ##__VA_ARGS__) namespace srsue { int radio_recv_wrapper_cs(void *obj, cf_t *data[SRSLTE_MAX_PORTS], uint32_t nsamples, srslte_timestamp_t *rx_time) { phch_recv *h = (phch_recv*) obj; srslte::radio_multi *radio_h = h->radio_h; if (radio_h->rx_now(data, nsamples, rx_time)) { int offset = nsamples - h->current_sflen; if (abs(offset) < 10 && offset != 0) { h->next_offset = offset; } else if (nsamples < 10) { h->next_offset = nsamples; } return nsamples; } else { return -1; } } double callback_set_rx_gain(void *h, double gain) { srslte::radio_multi *radio_handler = (srslte::radio_multi *) h; return radio_handler->set_rx_gain_th(gain); } phch_recv::phch_recv() { dl_freq = -1; ul_freq = -1; bzero(&cell, sizeof(srslte_cell_t)); running = false; } void phch_recv:: init(srslte::radio_multi *_radio_handler, mac_interface_phy *_mac, rrc_interface_phy *_rrc, prach *_prach_buffer, srslte::thread_pool *_workers_pool, phch_common *_worker_com, srslte::log *_log_h, uint32_t nof_rx_antennas_, uint32_t prio, int sync_cpu_affinity) { radio_h = _radio_handler; log_h = _log_h; mac = _mac; rrc = _rrc; workers_pool = _workers_pool; worker_com = _worker_com; prach_buffer = _prach_buffer; nof_rx_antennas = nof_rx_antennas_; reset(); for (uint32_t i = 0; i < nof_rx_antennas; i++) { sf_buffer[i] = (cf_t *) srslte_vec_malloc(sizeof(cf_t) * 3 * SRSLTE_SF_LEN_PRB(100)); } if (srslte_ue_cellsearch_init_multi(&cs, 5, radio_recv_wrapper_cs, nof_rx_antennas, this)) { Error("SYNC: Initiating UE cell search\n"); return; } srslte_ue_cellsearch_set_nof_valid_frames(&cs, 2); // Set options defined in expert section set_ue_sync_opts(&cs.ue_sync); if (do_agc) { srslte_ue_sync_start_agc(&cs.ue_sync, callback_set_rx_gain, last_gain); } if (srslte_ue_dl_init(&ue_dl_measure, sf_buffer, SRSLTE_MAX_PRB, nof_rx_antennas)) { Error("SYNC: Initiating ue_dl_measure\n"); return; } if (srslte_ue_mib_init(&ue_mib, sf_buffer, SRSLTE_MAX_PRB)) { Error("SYNC: Initiating UE MIB decoder\n"); return; } if (srslte_ue_sync_init_multi(&ue_sync, SRSLTE_MAX_PRB, false, radio_recv_wrapper_cs, nof_rx_antennas, this)) { Error("SYNC: Initiating ue_sync\n"); return; } if (srslte_ue_mib_sync_init_multi(&ue_mib_sync, radio_recv_wrapper_cs, nof_rx_antennas, this)) { Error("SYNC: Initiating UE MIB synchronization\n"); return; } nof_tx_mutex = MUTEX_X_WORKER * workers_pool->get_nof_workers(); worker_com->set_nof_mutex(nof_tx_mutex); if (sync_cpu_affinity < 0) { start(prio); } else { start_cpu(prio, sync_cpu_affinity); } } phch_recv::~phch_recv() { for (uint32_t i = 0; i < nof_rx_antennas; i++) { if (sf_buffer[i]) { free(sf_buffer[i]); } } srslte_ue_sync_free(&ue_sync); srslte_ue_dl_free(&ue_dl_measure); srslte_ue_mib_free(&ue_mib); srslte_ue_mib_sync_free(&ue_mib_sync); srslte_ue_cellsearch_free(&cs); } void phch_recv::stop() { running = false; wait_thread_finish(); } void phch_recv::reset() { tx_mutex_cnt = 0; running = true; phy_state = IDLE; time_adv_sec = 0; next_offset = 0; cell_is_set = false; sync_sfn_cnt = 0; srate_mode = SRATE_NONE; cell_search_in_progress = false; current_earfcn = 0; radio_is_resetting = false; } void phch_recv::radio_error() { log_h->error("SYNC: Receiving from radio.\n"); phy_state = IDLE; radio_is_resetting=true; // Need to find a method to effectively reset radio, reloading the driver does not work //radio_h->reset(); radio_h->stop(); fprintf(stdout, "Error while receiving samples. Restart srsUE\n"); exit(-1); reset(); radio_is_resetting=false; } bool phch_recv::wait_radio_reset() { int cnt=0; while(cnt < 20 && radio_is_resetting) { sleep(1); cnt++; } return radio_is_resetting; } void phch_recv::set_agc_enable(bool enable) { do_agc = enable; } void phch_recv::set_time_adv_sec(float _time_adv_sec) { if (TX_MODE_CONTINUOUS && !radio_h->is_first_of_burst()) { int nsamples = ceil(current_srate*_time_adv_sec); next_offset = -nsamples; } else { time_adv_sec = _time_adv_sec; } } void phch_recv::set_ue_sync_opts(srslte_ue_sync_t *q) { if (worker_com->args->cfo_integer_enabled) { srslte_ue_sync_cfo_i_detec_en(q, true); } srslte_ue_sync_set_cfo_ema(q, worker_com->args->cfo_ema); srslte_ue_sync_set_cfo_tol(q, worker_com->args->cfo_correct_tol_hz); int time_correct_period = worker_com->args->time_correct_period; if (time_correct_period > 0) { srslte_ue_sync_set_sample_offset_correct_period(q, time_correct_period); } sss_alg_t sss_alg = SSS_FULL; if (!worker_com->args->sss_algorithm.compare("diff")) { sss_alg = SSS_DIFF; } else if (!worker_com->args->sss_algorithm.compare("partial")) { sss_alg = SSS_PARTIAL_3; } else if (!worker_com->args->sss_algorithm.compare("full")) { sss_alg = SSS_FULL; } else { Warning("SYNC: Invalid SSS algorithm %s. Using 'full'\n", worker_com->args->sss_algorithm.c_str()); } srslte_sync_set_sss_algorithm(&q->strack, (sss_alg_t) sss_alg); srslte_sync_set_sss_algorithm(&q->sfind, (sss_alg_t) sss_alg); } bool phch_recv::set_cell() { cell_is_set = false; if (srslte_ue_mib_set_cell(&ue_mib, cell)) { Error("SYNC: Setting cell: initiating ue_mib\n"); return false; } if (srslte_ue_sync_set_cell(&ue_sync, cell)) { Error("SYNC: Setting cell: initiating ue_sync"); return false; } // Set options defined in expert section set_ue_sync_opts(&ue_sync); if (srslte_ue_dl_set_cell(&ue_dl_measure, cell)) { Error("SYNC: Setting cell: initiating ue_dl_measure\n"); return false; } worker_com->set_cell(cell); for (uint32_t i = 0; i < workers_pool->get_nof_workers(); i++) { if (!((phch_worker *) workers_pool->get_worker(i))->set_cell(cell)) { Error("SYNC: Setting cell: initiating PHCH worker\n"); return false; } } if (do_agc) { srslte_ue_sync_start_agc(&ue_sync, callback_set_rx_gain, last_gain); } cell_is_set = true; return cell_is_set; } int phch_recv::cell_search(int force_N_id_2) { uint8_t bch_payload[SRSLTE_BCH_PAYLOAD_LEN]; srslte_ue_cellsearch_result_t found_cells[3]; bzero(&cell, sizeof(srslte_cell_t)); bzero(found_cells, 3 * sizeof(srslte_ue_cellsearch_result_t)); if (srate_mode != SRATE_FIND) { srate_mode = SRATE_FIND; radio_h->set_rx_srate(1.92e6); } start_rx(); /* Find a cell in the given N_id_2 or go through the 3 of them to find the strongest */ uint32_t max_peak_cell = 0; int ret = SRSLTE_ERROR; Info("SYNC: Searching for cell...\n"); printf("."); fflush(stdout); if (force_N_id_2 >= 0 && force_N_id_2 < 3) { ret = srslte_ue_cellsearch_scan_N_id_2(&cs, force_N_id_2, &found_cells[force_N_id_2]); max_peak_cell = force_N_id_2; } else { ret = srslte_ue_cellsearch_scan(&cs, found_cells, &max_peak_cell); } last_gain = srslte_agc_get_gain(&cs.ue_sync.agc); if (ret < 0) { Error("SYNC: Error decoding MIB: Error searching PSS\n"); return -1; } else if (ret == 0) { stop_rx(); Info("SYNC: Could not find any cell in this frequency\n"); return 0; } // Save result cell.id = found_cells[max_peak_cell].cell_id; cell.cp = found_cells[max_peak_cell].cp; cellsearch_cfo = found_cells[max_peak_cell].cfo; printf("\n"); Info("SYNC: PSS/SSS detected: PCI=%d, CFO=%.1f KHz, CP=%s\n", cell.id, cellsearch_cfo/1000, srslte_cp_string(cell.cp)); if (srslte_ue_mib_sync_set_cell(&ue_mib_sync, cell.id, cell.cp)) { Error("SYNC: Setting UE MIB cell\n"); return false; } // Set options defined in expert section set_ue_sync_opts(&ue_mib_sync.ue_sync); if (do_agc) { srslte_ue_sync_start_agc(&ue_mib_sync.ue_sync, callback_set_rx_gain, last_gain); } srslte_ue_sync_reset(&ue_mib_sync.ue_sync); srslte_ue_sync_set_cfo(&ue_mib_sync.ue_sync, cellsearch_cfo); /* Find and decode MIB */ int sfn_offset; ret = srslte_ue_mib_sync_decode(&ue_mib_sync, 40, bch_payload, &cell.nof_ports, &sfn_offset); stop_rx(); last_gain = srslte_agc_get_gain(&ue_mib_sync.ue_sync.agc); cellsearch_cfo = srslte_ue_sync_get_cfo(&ue_mib_sync.ue_sync); srslte_ue_sync_reset(&ue_sync); srslte_ue_sync_set_cfo(&ue_sync, cellsearch_cfo); if (ret == 1) { srslte_pbch_mib_unpack(bch_payload, &cell, NULL); fprintf(stdout, "Found Cell: PCI=%d, PRB=%d, Ports=%d, CFO=%.1f KHz\n", cell.id, cell.nof_prb, cell.nof_ports, cellsearch_cfo/1000); Info("SYNC: MIB Decoded: PCI=%d, PRB=%d, Ports=%d, CFO=%.1f KHz\n", cell.id, cell.nof_prb, cell.nof_ports, cellsearch_cfo/1000); return true; } else if (ret == 0) { Warning("SYNC: Found PSS but could not decode PBCH\n"); return 0; } else { Error("SYNC: Receiving MIB\n"); return -1; } } int phch_recv::cell_sync_sfn(void) { int ret = SRSLTE_ERROR; uint8_t bch_payload[SRSLTE_BCH_PAYLOAD_LEN]; srslte_ue_sync_decode_sss_on_track(&ue_sync, true); ret = srslte_ue_sync_zerocopy_multi(&ue_sync, sf_buffer); if (ret < 0) { Error("SYNC: Error calling ue_sync_get_buffer"); return -1; } if (ret == 1) { if (srslte_ue_sync_get_sfidx(&ue_sync) == 0) { int sfn_offset = 0; Info("SYNC: Trying to decode MIB... SNR=%.1f dB\n", 10*log10(srslte_chest_dl_get_snr(&ue_mib.chest))); int n = srslte_ue_mib_decode(&ue_mib, bch_payload, NULL, &sfn_offset); if (n < 0) { Error("SYNC: Error decoding MIB while synchronising SFN"); return -1; } else if (n == SRSLTE_UE_MIB_FOUND) { uint32_t sfn; srslte_pbch_mib_unpack(bch_payload, &cell, &sfn); sfn = (sfn+sfn_offset)%1024; tti = sfn * 10; srslte_ue_sync_decode_sss_on_track(&ue_sync, true); Info("SYNC: DONE, TTI=%d, sfn_offset=%d\n", tti, sfn_offset); srslte_ue_mib_reset(&ue_mib); return 1; } } } else { Debug("SYNC: PSS/SSS not found...\n"); } return 0; } int phch_recv::cell_meas_rsrp() { uint32_t cfi = 0; tti = (tti+1) % 10240; log_h->step(tti); uint32_t sf_idx = tti%10; int sync_res = srslte_ue_sync_zerocopy_multi(&ue_sync, sf_buffer); if (sync_res == 1) { if (srslte_ue_dl_decode_fft_estimate(&ue_dl_measure, sf_buffer, sf_idx, &cfi)) { log_h->error("SYNC: Measuring RSRP: Estimating channel\n"); return -1; } float rsrp = srslte_chest_dl_get_rsrp(&ue_dl_measure.chest); float snr = srslte_chest_dl_get_snr(&ue_dl_measure.chest); measure_rsrp = SRSLTE_VEC_CMA(rsrp, measure_rsrp, measure_cnt); measure_cnt++; log_h->info("SYNC: Measuring RSRP %d/%d, sf_idx=%d, RSRP=%.1f dBm, SNR=%.1f dB\n", measure_cnt, RSRP_MEASURE_NOF_FRAMES, sf_idx, 10 * log10(rsrp / 1000), 10*log10(snr)); if (measure_cnt >= RSRP_MEASURE_NOF_FRAMES) { return 1; } } else { log_h->error("SYNC: Measuring RSRP: Sync error\n"); return -1; } return 0; } void phch_recv::resync_sfn(bool is_connected) { wait_radio_reset(); stop_rx(); start_rx(); srslte_ue_mib_reset(&ue_mib); Info("SYNC: Starting SFN synchronization\n"); sync_sfn_cnt = 0; phy_state = is_connected?CELL_RESELECT:CELL_SELECT; } void phch_recv::set_earfcn(std::vector earfcn) { this->earfcn = earfcn; } void phch_recv::force_freq(float dl_freq, float ul_freq) { this->dl_freq = dl_freq; this->ul_freq = ul_freq; } bool phch_recv::stop_sync() { wait_radio_reset(); if (phy_state == IDLE && is_in_idle) { return true; } else { Info("SYNC: Going to IDLE\n"); phy_state = IDLE; int cnt = 0; while (!is_in_idle && cnt < 100) { usleep(10000); cnt++; } return is_in_idle; } } void phch_recv::reset_sync() { wait_radio_reset(); Warning("SYNC: Resetting sync, cell_search_in_progress=%s\n", cell_search_in_progress?"yes":"no"); srslte_ue_sync_reset(&ue_mib_sync.ue_sync); srslte_ue_sync_reset(&ue_sync); resync_sfn(true); } void phch_recv::cell_search_inc() { cur_earfcn_index++; if (cur_earfcn_index >= 0) { if (cur_earfcn_index >= (int) earfcn.size() - 1) { cur_earfcn_index = 0; rrc->earfcn_end(); } } Info("SYNC: Cell Search idx %d/%d\n", cur_earfcn_index, earfcn.size()); if (current_earfcn != earfcn[cur_earfcn_index]) { current_earfcn = earfcn[cur_earfcn_index]; set_frequency(); } } void phch_recv::cell_search_next(bool reset) { if (cell_search_in_progress || reset) { cell_search_in_progress = false; if (!stop_sync()) { log_h->warning("SYNC: Couldn't stop PHY\n"); } if (reset) { cur_earfcn_index = -1; } cell_search_inc(); phy_state = CELL_SEARCH; cell_search_in_progress = true; } } void phch_recv::cell_search_start() { if (earfcn.size() > 0) { Info("SYNC: Starting Cell Search procedure in %d EARFCNs...\n", earfcn.size()); cell_search_next(true); } else { Info("SYNC: Empty EARFCN list. Stopping cell search...\n"); log_h->console("Empty EARFCN list. Stopping cell search...\n"); } } void phch_recv::cell_search_stop() { Info("SYNC: Stopping Cell Search procedure...\n"); if (!stop_sync()) { Error("SYNC: Stopping cell search\n"); } cell_search_in_progress = false; } bool phch_recv::cell_select(uint32_t earfcn, srslte_cell_t cell) { // Check if we are already camping in this cell if (earfcn == current_earfcn && this->cell.id == cell.id) { log_h->info("Cell Select: Already in cell EARFCN=%d\n", earfcn); cell_search_in_progress = false; if (srate_mode != SRATE_CAMP) { set_sampling_rate(); } if (phy_state < CELL_SELECT) { resync_sfn(); } return true; } else { cell_search_in_progress = false; if (!stop_sync()) { log_h->warning("Still not in idle\n"); } current_earfcn = earfcn; printf("cell select called set frequency\n"); if (set_frequency()) { this->cell = cell; log_h->info("Cell Select: Configuring cell...\n"); if (set_cell()) { log_h->info("Cell Select: Synchronizing on cell...\n"); resync_sfn(); usleep(500000); // Time offset we set start_rx to start receveing samples return true; } else { log_h->error("Cell Select: Configuring cell in EARFCN=%d, PCI=%d\n", earfcn, cell.id); } } return false; } } bool phch_recv::set_frequency() { double set_dl_freq = 0; double set_ul_freq = 0; if (this->dl_freq > 0 && this->ul_freq > 0) { set_dl_freq = this->dl_freq; set_ul_freq = this->ul_freq; } else { set_dl_freq = 1e6*srslte_band_fd(current_earfcn); set_ul_freq = 1e6*srslte_band_fu(srslte_band_ul_earfcn(current_earfcn)); } if (set_dl_freq > 0 && set_ul_freq > 0) { log_h->info("SYNC: Set DL EARFCN=%d, f_dl=%.1f MHz, f_ul=%.1f MHz\n", current_earfcn, set_dl_freq / 1e6, set_ul_freq / 1e6); log_h->console("Searching cell in DL EARFCN=%d, f_dl=%.1f MHz, f_ul=%.1f MHz\n", current_earfcn, set_dl_freq / 1e6, set_ul_freq / 1e6); radio_h->set_rx_freq(set_dl_freq); radio_h->set_tx_freq(set_ul_freq); ul_dl_factor = radio_h->get_tx_freq()/radio_h->get_rx_freq(); srslte_ue_sync_reset(&ue_sync); return true; } else { log_h->error("SYNC: Cell Search: Invalid EARFCN=%d\n", current_earfcn); return false; } } void phch_recv::set_sampling_rate() { current_srate = (float) srslte_sampling_freq_hz(cell.nof_prb); current_sflen = SRSLTE_SF_LEN_PRB(cell.nof_prb); if (current_srate != -1) { Info("SYNC: Setting sampling rate %.2f MHz\n", current_srate/1000000); if (30720 % ((int) current_srate / 1000) == 0) { radio_h->set_master_clock_rate(30.72e6); } else { radio_h->set_master_clock_rate(23.04e6); } srate_mode = SRATE_CAMP; radio_h->set_rx_srate(current_srate); radio_h->set_tx_srate(current_srate); } else { Error("Error setting sampling rate for cell with %d PRBs\n", cell.nof_prb); } } void phch_recv::run_thread() { phch_worker *worker = NULL; cf_t *buffer[SRSLTE_MAX_PORTS]; phy_state = IDLE; is_in_idle = true; while (running) { if (phy_state != IDLE) { is_in_idle = false; Debug("SYNC: state=%d\n", phy_state); } switch (phy_state) { case CELL_SEARCH: if (cell_search_in_progress) { switch(cell_search()) { case 1: if (!srslte_cell_isvalid(&cell)) { Error("SYNC: Detected invalid cell\n"); phy_state = IDLE; break; } if (set_cell()) { set_sampling_rate(); resync_sfn(); } break; case 0: if (cell_search_in_progress) { cell_search_inc(); } break; default: radio_error(); break; } } break; case CELL_RESELECT: case CELL_SELECT: srslte_ue_sync_decode_sss_on_track(&ue_sync, true); switch (cell_sync_sfn()) { case 1: srslte_ue_sync_set_agc_period(&ue_sync, 20); if (!cell_search_in_progress) { phy_state = CELL_CAMP; log_h->info("Sync OK. Camping on cell PCI=%d...\n", cell.id); } else { measure_cnt = 0; measure_rsrp = 0; phy_state = CELL_MEASURE; } break; case 0: break; default: radio_error(); break; } sync_sfn_cnt++; if (sync_sfn_cnt >= SYNC_SFN_TIMEOUT) { sync_sfn_cnt = 0; log_h->warning("SYNC: Timeout while synchronizing SFN\n"); if (phy_state == CELL_SELECT) { phy_state = CELL_SEARCH; } else { phy_state = IDLE; } } break; case CELL_MEASURE: switch(cell_meas_rsrp()) { case 1: log_h->info("SYNC: Measured OK. Camping on cell PCI=%d...\n", cell.id); phy_state = CELL_CAMP; rrc->cell_found(earfcn[cur_earfcn_index], cell, 10*log10(measure_rsrp/1000)); break; case 0: break; default: radio_error(); break; } break; case CELL_CAMP: tti = (tti+1) % 10240; worker = (phch_worker *) workers_pool->wait_worker(tti); if (worker) { for (uint32_t i = 0; i < nof_rx_antennas; i++) { buffer[i] = worker->get_buffer(i); } switch(srslte_ue_sync_zerocopy_multi(&ue_sync, buffer)) { case 1: log_h->step(tti); Debug("SYNC: Worker %d synchronized\n", worker->get_id()); metrics.sfo = srslte_ue_sync_get_sfo(&ue_sync); metrics.cfo = srslte_ue_sync_get_cfo(&ue_sync); worker->set_cfo(ul_dl_factor * metrics.cfo / 15000); worker_com->set_sync_metrics(metrics); worker->set_sample_offset(srslte_ue_sync_get_sfo(&ue_sync)/1000); /* Compute TX time: Any transmission happens in TTI+4 thus advance 4 ms the reception time */ srslte_timestamp_t rx_time, tx_time, tx_time_prach; srslte_ue_sync_get_last_timestamp(&ue_sync, &rx_time); srslte_timestamp_copy(&tx_time, &rx_time); srslte_timestamp_add(&tx_time, 0, HARQ_DELAY_MS*1e-3 - time_adv_sec); worker->set_tx_time(tx_time, next_offset); next_offset = 0; Debug("SYNC: Setting TTI=%d, tx_mutex=%d to worker %d\n", tti, tx_mutex_cnt, worker->get_id()); worker->set_tti(tti, tx_mutex_cnt); tx_mutex_cnt = (tx_mutex_cnt+1) % nof_tx_mutex; // Check if we need to TX a PRACH if (prach_buffer->is_ready_to_send(tti)) { srslte_timestamp_copy(&tx_time_prach, &rx_time); srslte_timestamp_add(&tx_time_prach, 0, prach::tx_advance_sf * 1e-3); prach_buffer->send(radio_h, ul_dl_factor * metrics.cfo / 15000, worker_com->pathloss, tx_time_prach); radio_h->tx_end(); worker_com->p0_preamble = prach_buffer->get_p0_preamble(); worker_com->cur_radio_power = SRSLTE_MIN(SRSLTE_PC_MAX, worker_com->pathloss+worker_com->p0_preamble); } workers_pool->start_worker(worker); break; case 0: log_h->error("SYNC: Sync error. Sending out-of-sync to RRC\n"); // Notify RRC of out-of-sync frame rrc->out_of_sync(); worker->release(); worker_com->reset_ul(); mac->tti_clock(tti); break; default: radio_error(); break; } } else { // wait_worker() only returns NULL if it's being closed. Quit now to avoid unnecessary loops here running = false; } break; case IDLE: if (!is_in_idle) { stop_rx(); } is_in_idle = true; usleep(1000); // Keep running MAC timer from system clock tti = (tti+1) % 10240; mac->tti_clock(tti); break; } } } void phch_recv::stop_rx() { if (radio_is_rx) { Info("SYNC: Stopping RX streaming\n"); radio_h->stop_rx(); } radio_is_rx = false; } void phch_recv::start_rx() { if (!radio_is_rx) { Info("SYNC: Starting RX streaming\n"); radio_h->start_rx(); } radio_is_rx = true; } uint32_t phch_recv::get_current_tti() { return tti; } bool phch_recv::status_is_sync() { return phy_state == CELL_CAMP; } void phch_recv::get_current_cell(srslte_cell_t *cell_) { if (cell_) { memcpy(cell_, &cell, sizeof(srslte_cell_t)); } } }