/** * * \section COPYRIGHT * * Copyright 2013-2014 The libLTE Developers. See the * COPYRIGHT file at the top-level directory of this distribution. * * \section LICENSE * * This file is part of the libLTE library. * * libLTE is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as * published by the Free Software Foundation, either version 3 of * the License, or (at your option) any later version. * * libLTE is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * A copy of the GNU Lesser General Public License can be found in * the LICENSE file in the top-level directory of this distribution * and at http://www.gnu.org/licenses/. * */ #include #include #include #include "liblte/phy/utils/debug.h" #include "liblte/phy/common/phy_common.h" #include "liblte/phy/sync/sync.h" #include "liblte/phy/utils/vector.h" #include "liblte/phy/sync/cfo.h" #define MEANPEAK_EMA_ALPHA 0.2 #define CFO_EMA_ALPHA 0.01 #define CP_EMA_ALPHA 0.2 static bool fft_size_isvalid(uint32_t fft_size) { if (fft_size >= FFT_SIZE_MIN && fft_size <= FFT_SIZE_MAX && (fft_size%64) == 0) { return true; } else { return false; } } int sync_init(sync_t *q, uint32_t frame_size, uint32_t fft_size) { int ret = LIBLTE_ERROR_INVALID_INPUTS; if (q != NULL && frame_size <= 307200 && fft_size_isvalid(fft_size)) { ret = LIBLTE_ERROR; bzero(q, sizeof(sync_t)); q->detect_cp = true; q->mean_peak_value = 0.0; q->sss_en = true; q->correct_cfo = true; q->N_id_2 = 1000; q->N_id_1 = 1000; q->fft_size = fft_size; q->frame_size = frame_size; q->sss_alg = SSS_PARTIAL_3; if (pss_synch_init_fft(&q->pss, frame_size, fft_size)) { fprintf(stderr, "Error initializing PSS object\n"); goto clean_exit; } if (sss_synch_init(&q->sss, fft_size)) { fprintf(stderr, "Error initializing SSS object\n"); goto clean_exit; } if (cfo_init(&q->cfocorr, frame_size)) { fprintf(stderr, "Error initiating CFO\n"); goto clean_exit; } DEBUG("SYNC init with frame_size=%d and fft_size=%d\n", frame_size, fft_size); ret = LIBLTE_SUCCESS; } else { fprintf(stderr, "Invalid parameters frame_size: %d, fft_size: %d\n", frame_size, fft_size); } clean_exit: if (ret == LIBLTE_ERROR) { sync_free(q); } return ret; } void sync_free(sync_t *q) { if (q) { pss_synch_free(&q->pss); sss_synch_free(&q->sss); cfo_free(&q->cfocorr); } } void sync_set_threshold(sync_t *q, float threshold) { q->threshold = threshold; } void sync_sss_en(sync_t *q, bool enabled) { q->sss_en = enabled; } bool sync_sss_detected(sync_t *q) { return lte_N_id_1_isvalid(q->N_id_1); } int sync_get_cell_id(sync_t *q) { if (lte_N_id_2_isvalid(q->N_id_2) && lte_N_id_1_isvalid(q->N_id_1)) { return q->N_id_1*3 + q->N_id_2; } else { fprintf(stderr, "Error getting cell_id, invalid N_id_1 or N_id_2\n"); return LIBLTE_ERROR; } } int sync_set_N_id_2(sync_t *q, uint32_t N_id_2) { if (lte_N_id_2_isvalid(N_id_2)) { q->N_id_2 = N_id_2; return LIBLTE_SUCCESS; } else { fprintf(stderr, "Invalid N_id_2=%d\n", N_id_2); return LIBLTE_ERROR_INVALID_INPUTS; } } uint32_t sync_get_sf_idx(sync_t *q) { return q->sf_idx; } float sync_get_cfo(sync_t *q) { return q->mean_cfo; } float sync_get_last_peak_value(sync_t *q) { return q->peak_value; } float sync_get_peak_value(sync_t *q) { return q->mean_peak_value; } void sync_correct_cfo(sync_t *q, bool enabled) { q->correct_cfo = enabled; } void sync_cp_en(sync_t *q, bool enabled) { q->detect_cp = enabled; } bool sync_sss_is_en(sync_t *q) { return q->sss_en; } void sync_set_em_alpha(sync_t *q, float alpha) { pss_synch_set_ema_alpha(&q->pss, alpha); } lte_cp_t sync_get_cp(sync_t *q) { return q->cp; } void sync_set_cp(sync_t *q, lte_cp_t cp) { q->cp = cp; } void sync_set_sss_algorithm(sync_t *q, sss_alg_t alg) { q->sss_alg = alg; } /* CP detection algorithm taken from: * "SSS Detection Method for Initial Cell Search in 3GPP LTE FDD/TDD Dual Mode Receiver" * by Jung-In Kim et al. */ lte_cp_t sync_detect_cp(sync_t *q, cf_t *input, uint32_t peak_pos) { float R_norm, R_ext, C_norm, C_ext; float M_norm=0, M_ext=0; uint32_t cp_norm_len = CP_NORM(7, q->fft_size); uint32_t cp_ext_len = CP_EXT(q->fft_size); cf_t *input_cp_norm = &input[peak_pos-2*(q->fft_size+cp_norm_len)]; cf_t *input_cp_ext = &input[peak_pos-2*(q->fft_size+cp_ext_len)]; for (int i=0;i<2;i++) { R_norm = crealf(vec_dot_prod_conj_ccc(&input_cp_norm[q->fft_size], input_cp_norm, cp_norm_len)); C_norm = cp_norm_len * vec_avg_power_cf(input_cp_norm, cp_norm_len); input_cp_norm += q->fft_size+cp_norm_len; M_norm += R_norm/C_norm; } q->M_norm_avg = VEC_EMA(M_norm, q->M_norm_avg, CP_EMA_ALPHA); for (int i=0;i<2;i++) { R_ext = crealf(vec_dot_prod_conj_ccc(&input_cp_ext[q->fft_size], input_cp_ext, cp_ext_len)); C_ext = cp_ext_len * vec_avg_power_cf(input_cp_ext, cp_ext_len); input_cp_ext += q->fft_size+cp_ext_len; M_ext += R_ext/C_ext; } q->M_ext_avg = VEC_EMA(M_ext, q->M_ext_avg, CP_EMA_ALPHA); if (q->M_norm_avg > q->M_ext_avg) { return CPNORM; } else if (q->M_norm_avg < q->M_ext_avg) { return CPEXT; } else { if (R_norm > R_ext) { return CPNORM; } else { return CPEXT; } } } /* Returns 1 if the SSS is found, 0 if not and -1 if there is not enough space * to correlate */ int sync_sss(sync_t *q, cf_t *input, uint32_t peak_pos) { int sss_idx, ret; sss_synch_set_N_id_2(&q->sss, q->N_id_2); if (q->detect_cp) { if (peak_pos >= 2*(q->fft_size + CP_EXT(q->fft_size))) { q->cp = sync_detect_cp(q, input, peak_pos); } else { INFO("Not enough room to detect CP length. Peak position: %d\n", peak_pos); return LIBLTE_ERROR; } } /* Make sure we have enough room to find SSS sequence */ sss_idx = (int) peak_pos-2*q->fft_size-CP(q->fft_size, (CP_ISNORM(q->cp)?CPNORM_LEN:CPEXT_LEN)); if (sss_idx < 0) { INFO("Not enough room to decode CP SSS (sss_idx=%d, peak_pos=%d)\n", sss_idx, peak_pos); return LIBLTE_ERROR; } switch(q->sss_alg) { case SSS_DIFF: sss_synch_m0m1_diff(&q->sss, &input[sss_idx], &q->m0, &q->m0_value, &q->m1, &q->m1_value); break; case SSS_PARTIAL_3: sss_synch_m0m1_partial(&q->sss, &input[sss_idx], 3, NULL, &q->m0, &q->m0_value, &q->m1, &q->m1_value); break; case SSS_FULL: sss_synch_m0m1_partial(&q->sss, &input[sss_idx], 1, NULL, &q->m0, &q->m0_value, &q->m1, &q->m1_value); break; } q->sf_idx = sss_synch_subframe(q->m0, q->m1); ret = sss_synch_N_id_1(&q->sss, q->m0, q->m1); if (ret >= 0) { q->N_id_1 = (uint32_t) ret; DEBUG("SSS detected N_id_1=%d, sf_idx=%d, %s CP\n", q->N_id_1, q->sf_idx, CP_ISNORM(q->cp)?"Normal":"Extended"); return 1; } else { q->N_id_1 = 1000; return LIBLTE_SUCCESS; } } /** Finds the PSS sequence previously defined by a call to sync_set_N_id_2() * around the position find_offset in the buffer input. * Returns 1 if the correlation peak exceeds the threshold set by sync_set_threshold() * or 0 otherwise. Returns a negative number on error (if N_id_2 has not been set) * * The maximum of the correlation peak is always stored in *peak_position */ int sync_find(sync_t *q, cf_t *input, uint32_t find_offset, uint32_t *peak_position) { int ret = LIBLTE_ERROR_INVALID_INPUTS; if (q != NULL && input != NULL && lte_N_id_2_isvalid(q->N_id_2) && fft_size_isvalid(q->fft_size)) { int peak_pos; ret = LIBLTE_SUCCESS; if (peak_position) { *peak_position = 0; } pss_synch_set_N_id_2(&q->pss, q->N_id_2); peak_pos = pss_synch_find_pss(&q->pss, &input[find_offset], &q->peak_value); if (peak_pos < 0) { fprintf(stderr, "Error calling finding PSS sequence\n"); return LIBLTE_ERROR; } q->mean_peak_value = VEC_EMA(q->peak_value, q->mean_peak_value, MEANPEAK_EMA_ALPHA); if (peak_position) { *peak_position = (uint32_t) peak_pos; } /* If peak is over threshold, compute CFO and SSS */ if (q->peak_value >= q->threshold) { // Make sure we have enough space to estimate CFO if (peak_pos + find_offset >= q->fft_size) { float cfo = pss_synch_cfo_compute(&q->pss, &input[find_offset+peak_pos-q->fft_size]); /* compute cumulative moving average CFO */ q->mean_cfo = VEC_EMA(cfo, q->mean_cfo, CFO_EMA_ALPHA); } else { INFO("No space for CFO computation. Frame starts at \n",peak_pos); } // Try to detect SSS if (q->sss_en) { /* Correct CFO with the averaged CFO estimation */ if (q->mean_cfo && q->correct_cfo) { cfo_correct(&q->cfocorr, input, input, -q->mean_cfo / q->fft_size); } // Set an invalid N_id_1 indicating SSS is yet to be detected q->N_id_1 = 1000; if (sync_sss(q, input, find_offset + peak_pos) < 0) { INFO("No space for SSS processing. Frame starts at %d\n", peak_pos); } } // Return 1 (peak detected) even if we couldn't estimate CFO and SSS ret = 1; } else { ret = 0; } INFO("SYNC ret=%d N_id_2=%d frame_size=%d pos=%d peak=%.2f threshold=%.2f sf_idx=%d, CFO=%.3f KHz\n", ret, q->N_id_2, q->frame_size, peak_pos, q->peak_value, q->threshold, q->sf_idx, 15*q->mean_cfo); } else if (lte_N_id_2_isvalid(q->N_id_2)) { fprintf(stderr, "Must call sync_set_N_id_2() first!\n"); } return ret; } void sync_reset(sync_t *q) { q->M_ext_avg = 0; q->M_norm_avg = 0; pss_synch_reset(&q->pss); }