/** * * \section COPYRIGHT * * Copyright 2013-2021 Software Radio Systems Limited * * By using this file, you agree to the terms and conditions set * forth in the LICENSE file which can be found at the top level of * the distribution. * */ #ifndef SRSRAN_BATCH_MEM_POOL_H #define SRSRAN_BATCH_MEM_POOL_H #include "memblock_cache.h" #include "pool_utils.h" #include "srsran/common/srsran_assert.h" #include "srsran/common/thread_pool.h" #include #include namespace srsran { /** * Non-thread-safe, node-based memory pool that allocates nodes in batches of "objs_per_batch" > 1, and caches * allocated blocks on deallocation */ class growing_batch_mem_pool { public: explicit growing_batch_mem_pool(size_t objs_per_batch_, size_t node_size_, size_t node_alignment_, int init_size = -1) : objs_per_batch(objs_per_batch_), memblock_size(std::max(node_size_, free_memblock_list::min_memblock_size())), allocated(objs_per_batch * memblock_size, std::max(node_alignment_, free_memblock_list::min_memblock_align())) { size_t N = init_size < 0 ? objs_per_batch_ : init_size; while (N > cache_size()) { allocate_batch(); } } ~growing_batch_mem_pool() { srsran_assert(cache_size() == size(), "Not all nodes have been deallocated yet (%zd < %zd)", cache_size(), size()); } size_t get_node_max_size() const { return allocated.get_node_max_size(); } void clear() { free_list.clear(); allocated.clear(); } size_t cache_size() const { return free_list.size(); } size_t size() const { return allocated.size() * objs_per_batch; } void allocate_batch() { uint8_t* batch_payload = static_cast(allocated.allocate_block()); for (size_t i = 0; i < objs_per_batch; ++i) { void* cache_node = batch_payload + i * memblock_size; free_list.push(cache_node); } } void* allocate_node() { if (free_list.empty()) { allocate_batch(); } return free_list.pop(); } void deallocate_node(void* ptr) { free_list.push(ptr); } private: const size_t objs_per_batch; const size_t memblock_size; memblock_stack allocated; free_memblock_list free_list; }; /** * Thread-safe object pool specialized in allocating batches of objects in a preemptive way in a background thread * to minimize latency. * Note: The dispatched allocation jobs may outlive the pool. To handle this, the pool state is passed to jobs via a * shared ptr. */ class background_mem_pool { public: const size_t batch_threshold; explicit background_mem_pool(size_t nodes_per_batch_, size_t node_size_, size_t thres_, int initial_size = -1) : batch_threshold(thres_), state(std::make_shared(this)), grow_pool(nodes_per_batch_, node_size_, detail::max_alignment, initial_size) { srsran_assert(batch_threshold > 1, "Invalid arguments for background memory pool"); } ~background_mem_pool() { std::lock_guard lock(state->mutex); state->pool = nullptr; grow_pool.clear(); } /// alloc new object space. If no memory is pre-reserved in the pool, malloc is called to allocate new batch. void* allocate_node(size_t sz) { srsran_assert(sz <= grow_pool.get_node_max_size(), "Mismatch of allocated node size=%zd and object size=%zd", sz, grow_pool.get_node_max_size()); std::lock_guard lock(state->mutex); void* node = grow_pool.allocate_node(); if (grow_pool.size() < batch_threshold) { allocate_batch_in_background(); } return node; } void deallocate_node(void* p) { std::lock_guard lock(state->mutex); grow_pool.deallocate_node(p); } size_t get_node_max_size() const { return grow_pool.get_node_max_size(); } private: void allocate_batch_in_background() { std::shared_ptr state_copy = state; get_background_workers().push_task([state_copy]() { std::lock_guard lock(state_copy->mutex); if (state_copy->pool != nullptr) { state_copy->pool->grow_pool.allocate_batch(); } }); } struct detached_pool_state { std::mutex mutex; background_mem_pool* pool; explicit detached_pool_state(background_mem_pool* pool_) : pool(pool_) {} }; std::shared_ptr state; growing_batch_mem_pool grow_pool; }; } // namespace srsran #endif // SRSRAN_BATCH_MEM_POOL_H