/* * Copyright 2013-2020 Software Radio Systems Limited * * This file is part of srsLTE. * * srsLTE is free software: you can redistribute it and/or modify * it under the terms of the GNU Affero General Public License as * published by the Free Software Foundation, either version 3 of * the License, or (at your option) any later version. * * srsLTE is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Affero General Public License for more details. * * A copy of the GNU Affero General Public License can be found in * the LICENSE file in the top-level directory of this distribution * and at http://www.gnu.org/licenses/. * */ #include "scheduler_test_common.h" #include "srsenb/hdr/stack/mac/scheduler.h" #include "srslte/mac/pdu.h" #include "srslte/common/test_common.h" #include using namespace srsenb; /*************************** * Random Utils **************************/ std::default_random_engine rand_gen; float ::srsenb::randf() { static std::uniform_real_distribution unif_dist(0, 1.0); return unif_dist(rand_gen); } void ::srsenb::set_randseed(uint64_t seed) { rand_gen = std::default_random_engine(seed); } std::default_random_engine& ::srsenb::get_rand_gen() { return rand_gen; } /*************************** * Sched Testers **************************/ int output_sched_tester::test_pusch_collisions(const tti_params_t& tti_params, const sched_interface::ul_sched_res_t& ul_result, prbmask_t& ul_allocs) const { uint32_t nof_prb = cell_params.nof_prb(); ul_allocs.resize(nof_prb); ul_allocs.reset(); auto try_ul_fill = [&](srsenb::ul_harq_proc::ul_alloc_t alloc, const char* ch_str, bool strict = true) { CONDERROR((alloc.RB_start + alloc.L) > nof_prb, "Allocated RBs (%d,%d) out-of-bounds\n", alloc.RB_start, alloc.RB_start + alloc.L); CONDERROR(alloc.L == 0, "Allocations must have at least one PRB\n"); if (strict and ul_allocs.any(alloc.RB_start, alloc.RB_start + alloc.L)) { TESTERROR("Collision Detected of %s alloc=(%d,%d) and cumulative_mask=0x%s\n", ch_str, alloc.RB_start, alloc.RB_start + alloc.L, ul_allocs.to_hex().c_str()); } ul_allocs.fill(alloc.RB_start, alloc.RB_start + alloc.L, true); return SRSLTE_SUCCESS; }; /* TEST: Check if there is space for PRACH */ bool is_prach_tti_tx_ul = srslte_prach_tti_opportunity_config_fdd(cell_params.cfg.prach_config, tti_params.tti_tx_ul, -1); if (is_prach_tti_tx_ul) { try_ul_fill({cell_params.cfg.prach_freq_offset, 6}, "PRACH"); } /* TEST: check collisions in PUCCH */ bool strict = nof_prb != 6 or (not is_prach_tti_tx_ul); // and not tti_data.ul_pending_msg3_present); try_ul_fill({0, (uint32_t)cell_params.cfg.nrb_pucch}, "PUCCH", strict); try_ul_fill( {cell_params.cfg.cell.nof_prb - cell_params.cfg.nrb_pucch, (uint32_t)cell_params.cfg.nrb_pucch}, "PUCCH", strict); /* TEST: check collisions in the UL PUSCH */ for (uint32_t i = 0; i < ul_result.nof_dci_elems; ++i) { uint32_t L, RBstart; srslte_ra_type2_from_riv(ul_result.pusch[i].dci.type2_alloc.riv, &L, &RBstart, nof_prb, nof_prb); strict = ul_result.pusch[i].needs_pdcch or nof_prb != 6; // Msg3 may collide with PUCCH at PRB==6 try_ul_fill({RBstart, L}, "PUSCH", strict); // ue_stats[ul_result.pusch[i].dci.rnti].nof_ul_rbs += L; } return SRSLTE_SUCCESS; } int output_sched_tester::test_pdsch_collisions(const tti_params_t& tti_params, const sched_interface::dl_sched_res_t& dl_result, rbgmask_t& rbgmask) const { srslte::bounded_bitset<100, true> dl_allocs(cell_params.cfg.cell.nof_prb), alloc_mask(cell_params.cfg.cell.nof_prb); auto try_dl_mask_fill = [&](const srslte_dci_dl_t& dci, const char* channel) { if (extract_dl_prbmask(cell_params.cfg.cell, dci, &alloc_mask) != SRSLTE_SUCCESS) { return SRSLTE_ERROR; } if ((dl_allocs & alloc_mask).any()) { TESTERROR("Detected collision in the DL %s allocation (%s intersects %s)\n", channel, dl_allocs.to_string().c_str(), alloc_mask.to_string().c_str()); } dl_allocs |= alloc_mask; return SRSLTE_SUCCESS; }; // Decode BC allocations, check collisions, and fill cumulative mask for (uint32_t i = 0; i < dl_result.nof_bc_elems; ++i) { TESTASSERT(try_dl_mask_fill(dl_result.bc[i].dci, "BC") == SRSLTE_SUCCESS); } // Decode RAR allocations, check collisions, and fill cumulative mask for (uint32_t i = 0; i < dl_result.nof_rar_elems; ++i) { TESTASSERT(try_dl_mask_fill(dl_result.rar[i].dci, "RAR") == SRSLTE_SUCCESS); } // forbid Data in DL if it conflicts with PRACH for PRB==6 if (cell_params.cfg.cell.nof_prb == 6) { uint32_t tti_rx_ack = tti_params.tti_rx_ack_dl(); if (srslte_prach_tti_opportunity_config_fdd(cell_params.cfg.prach_config, tti_rx_ack, -1)) { dl_allocs.fill(0, dl_allocs.size()); } } // Decode Data allocations, check collisions and fill cumulative mask for (uint32_t i = 0; i < dl_result.nof_data_elems; ++i) { TESTASSERT(try_dl_mask_fill(dl_result.data[i].dci, "data") == SRSLTE_SUCCESS); } // TEST: check for holes in the PRB mask (RBGs not fully filled) rbgmask.resize(cell_params.nof_rbgs); rbgmask.reset(); srslte::bounded_bitset<100, true> rev_alloc = ~dl_allocs; for (uint32_t i = 0; i < cell_params.nof_rbgs; ++i) { uint32_t lim = SRSLTE_MIN((i + 1) * cell_params.P, dl_allocs.size()); bool val = dl_allocs.any(i * cell_params.P, lim); CONDERROR(rev_alloc.any(i * cell_params.P, lim) and val, "No holes can be left in an RBG\n"); if (val) { rbgmask.set(i); } } return SRSLTE_SUCCESS; } int output_sched_tester::test_sib_scheduling(const tti_params_t& tti_params, const sched_interface::dl_sched_res_t& dl_result) const { uint32_t sfn = tti_params.sfn_tx_dl; uint32_t sf_idx = tti_params.sf_idx_tx_dl; bool sib1_present = ((sfn % 2) == 0) and sf_idx == 5; using bc_elem = const sched_interface::dl_sched_bc_t; bc_elem* bc_begin = &dl_result.bc[0]; bc_elem* bc_end = &dl_result.bc[dl_result.nof_bc_elems]; /* Test if SIB1 was correctly scheduled */ if (sib1_present) { auto it = std::find_if(bc_begin, bc_end, [](bc_elem& elem) { return elem.index == 0; }); CONDERROR(it == bc_end, "Failed to allocate SIB1 in even sfn, sf_idx==5\n"); } /* Test if any SIB was scheduled with wrong index, tbs, or outside of its window */ for (bc_elem* bc = bc_begin; bc != bc_end; ++bc) { if (bc->index == 0) { continue; } CONDERROR(bc->index >= sched_interface::MAX_SIBS, "Invalid SIB idx=%d\n", bc->index + 1); CONDERROR(bc->tbs < cell_params.cfg.sibs[bc->index].len, "Allocated BC process with TBS=%d < sib_len=%d\n", bc->tbs, cell_params.cfg.sibs[bc->index].len); uint32_t x = (bc->index - 1) * cell_params.cfg.si_window_ms; uint32_t sf = x % 10; uint32_t sfn_start = sfn; while ((sfn_start % cell_params.cfg.sibs[bc->index].period_rf) != x / 10) { sfn_start--; } uint32_t win_start = sfn_start * 10 + sf; uint32_t win_end = win_start + cell_params.cfg.si_window_ms; CONDERROR(tti_params.tti_tx_dl < win_start or tti_params.tti_tx_dl > win_end, "Scheduled SIB is outside of its SIB window\n"); } return SRSLTE_SUCCESS; } int output_sched_tester::test_pdcch_collisions(const sched_interface::dl_sched_res_t& dl_result, const sched_interface::ul_sched_res_t& ul_result, srslte::bounded_bitset<128, true>* used_cce) const { used_cce->resize(srslte_regs_pdcch_ncce(cell_params.regs.get(), dl_result.cfi)); used_cce->reset(); // Helper Function: checks if there is any collision. If not, fills the PDCCH mask auto try_cce_fill = [&](const srslte_dci_location_t& dci_loc, const char* ch) { uint32_t cce_start = dci_loc.ncce, cce_stop = dci_loc.ncce + (1u << dci_loc.L); if (used_cce->any(cce_start, cce_stop)) { TESTERROR("%s DCI collision between CCE positions (%u, %u)\n", ch, cce_start, cce_stop); } used_cce->fill(cce_start, cce_stop); return SRSLTE_SUCCESS; }; /* TEST: verify there are no dci collisions for UL, DL data, BC, RAR */ for (uint32_t i = 0; i < ul_result.nof_dci_elems; ++i) { const auto& pusch = ul_result.pusch[i]; if (not pusch.needs_pdcch) { // In case of non-adaptive retx or Msg3 continue; } try_cce_fill(pusch.dci.location, "UL"); } for (uint32_t i = 0; i < dl_result.nof_data_elems; ++i) { try_cce_fill(dl_result.data[i].dci.location, "DL data"); } for (uint32_t i = 0; i < dl_result.nof_bc_elems; ++i) { try_cce_fill(dl_result.bc[i].dci.location, "DL BC"); } for (uint32_t i = 0; i < dl_result.nof_rar_elems; ++i) { try_cce_fill(dl_result.rar[i].dci.location, "DL RAR"); } return SRSLTE_SUCCESS; } int output_sched_tester::test_dci_values_consistency(const sched_interface::dl_sched_res_t& dl_result, const sched_interface::ul_sched_res_t& ul_result) const { for (uint32_t i = 0; i < ul_result.nof_dci_elems; ++i) { const auto& pusch = ul_result.pusch[i]; CONDERROR(pusch.tbs == 0, "Allocated RAR process with invalid TBS=%d\n", pusch.tbs); // CONDERROR(ue_db.count(pusch.dci.rnti) == 0, "The allocated rnti=0x%x does not exist\n", pusch.dci.rnti); if (not pusch.needs_pdcch) { // In case of non-adaptive retx or Msg3 continue; } CONDERROR(pusch.dci.location.L == 0, "Invalid aggregation level %d\n", pusch.dci.location.L); // TODO: Extend this test } for (uint32_t i = 0; i < dl_result.nof_data_elems; ++i) { auto& data = dl_result.data[i]; CONDERROR(data.tbs[0] == 0, "Allocated DL data has empty TBS\n"); } for (uint32_t i = 0; i < dl_result.nof_bc_elems; ++i) { auto& bc = dl_result.bc[i]; if (bc.type == sched_interface::dl_sched_bc_t::BCCH) { CONDERROR(bc.tbs < cell_params.cfg.sibs[bc.index].len, "Allocated BC process with TBS=%d < sib_len=%d\n", bc.tbs, cell_params.cfg.sibs[bc.index].len); } else if (bc.type == sched_interface::dl_sched_bc_t::PCCH) { CONDERROR(bc.tbs == 0, "Allocated paging process with invalid TBS=%d\n", bc.tbs); } else { TESTERROR("Invalid broadcast process id=%d\n", (int)bc.type); } } for (uint32_t i = 0; i < dl_result.nof_rar_elems; ++i) { const auto& rar = dl_result.rar[i]; CONDERROR(rar.tbs == 0, "Allocated RAR process with invalid TBS=%d\n", rar.tbs); } return SRSLTE_SUCCESS; } int output_sched_tester::test_all(const tti_params_t& tti_params, const sched_interface::dl_sched_res_t& dl_result, const sched_interface::ul_sched_res_t& ul_result) const { prbmask_t ul_allocs; TESTASSERT(test_pusch_collisions(tti_params, ul_result, ul_allocs) == SRSLTE_SUCCESS); rbgmask_t dl_mask; TESTASSERT(test_pdsch_collisions(tti_params, dl_result, dl_mask) == SRSLTE_SUCCESS); TESTASSERT(test_sib_scheduling(tti_params, dl_result) == SRSLTE_SUCCESS); srslte::bounded_bitset<128, true> used_cce; TESTASSERT(test_pdcch_collisions(dl_result, ul_result, &used_cce) == SRSLTE_SUCCESS); return SRSLTE_SUCCESS; } int srsenb::extract_dl_prbmask(const srslte_cell_t& cell, const srslte_dci_dl_t& dci, srslte::bounded_bitset<100, true>* alloc_mask) { srslte_pdsch_grant_t grant; srslte_dl_sf_cfg_t dl_sf = {}; alloc_mask->resize(cell.nof_prb); alloc_mask->reset(); CONDERROR(srslte_ra_dl_dci_to_grant(&cell, &dl_sf, SRSLTE_TM1, false, &dci, &grant) == SRSLTE_ERROR, "Failed to decode PDSCH grant\n"); for (uint32_t j = 0; j < alloc_mask->size(); ++j) { if (grant.prb_idx[0][j]) { alloc_mask->set(j); } } return SRSLTE_SUCCESS; } void user_state_sched_tester::new_tti(uint32_t tti_rx) { tic++; } int user_state_sched_tester::add_user(uint16_t rnti, uint32_t preamble_idx, const srsenb::sched_interface::ue_cfg_t& ue_cfg) { CONDERROR(!srslte_prach_tti_opportunity_config_fdd( cell_params[ue_cfg.supported_cc_list[0].enb_cc_idx].prach_config, tic.tti_rx(), -1), "New user added in a non-PRACH TTI\n"); TESTASSERT(users.count(rnti) == 0); ue_state ue; ue.user_cfg = ue_cfg; ue.prach_tic = tic; ue.preamble_idx = preamble_idx; users.insert(std::make_pair(rnti, ue)); return SRSLTE_SUCCESS; } int user_state_sched_tester::user_reconf(uint16_t rnti, const srsenb::sched_interface::ue_cfg_t& ue_cfg) { TESTASSERT(users.count(rnti) > 0); users[rnti].user_cfg = ue_cfg; return SRSLTE_SUCCESS; } int user_state_sched_tester::bearer_cfg(uint16_t rnti, uint32_t lcid, const srsenb::sched_interface::ue_bearer_cfg_t& bearer_cfg) { auto it = users.find(rnti); TESTASSERT(it != users.end()); it->second.user_cfg.ue_bearers[lcid] = bearer_cfg; users[rnti].drb_cfg_flag = false; for (uint32_t i = 2; i < it->second.user_cfg.ue_bearers.size(); ++i) { if (it->second.user_cfg.ue_bearers[i].direction != sched_interface::ue_bearer_cfg_t::IDLE) { users[rnti].drb_cfg_flag = true; } } return SRSLTE_SUCCESS; } void user_state_sched_tester::rem_user(uint16_t rnti) { users.erase(rnti); } /** * Tests whether the RAR and Msg3 were scheduled within the expected windows. Individual tests: * - No UL allocs before Msg3 * - No DL data allocs before Msg3 is correctly ACKed * - RAR alloc falls within RAR window and is unique per user * - Msg3 is allocated in expected TTI, without PDCCH, and correct rnti * - First Data allocation happens after Msg3, and contains a ConRes * - No RARs are allocated with wrong enb_cc_idx, preamble_idx or wrong user * TODO: * - check Msg3 PRBs match the ones advertised in the RAR */ int user_state_sched_tester::test_ra(uint32_t enb_cc_idx, const sched_interface::dl_sched_res_t& dl_result, const sched_interface::ul_sched_res_t& ul_result) { uint32_t msg3_count = 0; for (auto& iter : users) { uint16_t rnti = iter.first; ue_state& userinfo = iter.second; uint32_t primary_cc_idx = userinfo.user_cfg.supported_cc_list[0].enb_cc_idx; if (enb_cc_idx != primary_cc_idx) { // only check for RAR/Msg3 presence for a UE's PCell continue; } /* TEST: RAR allocation */ std::array rar_window = { userinfo.prach_tic + 3, userinfo.prach_tic + 3 + (int)cell_params[primary_cc_idx].prach_rar_window}; tti_counter tic_tx_dl = tic.tic_tx_dl(); tti_counter tic_tx_ul = tic.tic_tx_ul(); bool is_in_rar_window = tic_tx_dl >= rar_window[0] and tic_tx_dl <= rar_window[1]; if (not is_in_rar_window) { CONDERROR(not userinfo.rar_tic.is_valid() and tic_tx_dl > rar_window[1], "RAR not scheduled within the RAR Window\n"); for (uint32_t i = 0; i < dl_result.nof_rar_elems; ++i) { CONDERROR(dl_result.rar[i].dci.rnti == rnti, "No RAR allocations allowed outside of user RAR window\n"); } } else { // Inside RAR window for (uint32_t i = 0; i < dl_result.nof_rar_elems; ++i) { for (uint32_t j = 0; j < dl_result.rar[i].nof_grants; ++j) { auto& data = dl_result.rar[i].msg3_grant[j].data; if (data.prach_tti == (uint32_t)userinfo.prach_tic.tti_rx() and data.preamble_idx == userinfo.preamble_idx) { CONDERROR(userinfo.rar_tic.is_valid(), "There was more than one RAR for the same user\n"); CONDERROR(rnti != data.temp_crnti, "RAR grant C-RNTI does not match the expected.\n"); userinfo.msg3_riv = dl_result.rar[i].msg3_grant[j].grant.rba; userinfo.rar_tic = tic_tx_dl; } } } } /* TEST: Check Msg3 */ if (userinfo.rar_tic.is_valid() and not userinfo.msg3_tic.is_valid()) { // RAR scheduled, Msg3 not yet scheduled tti_counter expected_msg3_tti = userinfo.rar_tic + FDD_HARQ_DELAY_DL_MS + MSG3_DELAY_MS; CONDERROR(expected_msg3_tti < tic_tx_ul and not userinfo.msg3_tic.is_valid(), "No UL msg3 alloc was made\n"); if (expected_msg3_tti == tic_tx_ul) { // Msg3 should exist for (uint32_t i = 0; i < ul_result.nof_dci_elems; ++i) { if (ul_result.pusch[i].dci.rnti == rnti) { CONDERROR(userinfo.msg3_tic.is_valid(), "Only one Msg3 allowed per user\n"); CONDERROR(ul_result.pusch[i].needs_pdcch, "Msg3 allocations do not require PDCCH\n"); CONDERROR(userinfo.msg3_riv != ul_result.pusch[i].dci.type2_alloc.riv, "The Msg3 was not allocated in the expected PRBs.\n"); userinfo.msg3_tic = tic_tx_ul; msg3_count++; } } } } /* TEST: Check Msg4 */ if (userinfo.msg3_tic.is_valid() and not userinfo.msg4_tic.is_valid()) { // Msg3 scheduled, but Msg4 not yet scheduled for (uint32_t i = 0; i < dl_result.nof_data_elems; ++i) { if (dl_result.data[i].dci.rnti == rnti) { CONDERROR(tic < userinfo.msg3_tic, "Msg4 cannot be scheduled without Msg3 being tx\n"); for (uint32_t j = 0; j < dl_result.data[i].nof_pdu_elems[0]; ++j) { if (dl_result.data[i].pdu[0][j].lcid == srslte::sch_subh::CON_RES_ID) { // ConRes found CONDERROR(dl_result.data[i].dci.format != SRSLTE_DCI_FORMAT1, "ConRes must be format1\n"); CONDERROR(userinfo.msg4_tic.is_valid(), "Duplicate ConRes CE for the same rnti\n"); userinfo.msg4_tic = tic_tx_dl; } } } } } /* TEST: Txs out of place */ if (not userinfo.msg4_tic.is_valid()) { // Msg4 not yet received by user for (uint32_t i = 0; i < dl_result.nof_data_elems; ++i) { CONDERROR(dl_result.data[i].dci.rnti == rnti, "No DL data allocs allowed before Msg4 is scheduled\n"); } if (userinfo.msg3_tic.is_valid() and userinfo.msg3_tic != tic_tx_ul) { // Msg3 scheduled. No UL alloc allowed unless it is a newtx (the Msg3 itself) for (uint32_t i = 0; i < ul_result.nof_dci_elems; ++i) { // Needs PDCCH - filters out UL retxs bool msg3_retx = ((tic_tx_ul - userinfo.msg3_tic) % (FDD_HARQ_DELAY_UL_MS + FDD_HARQ_DELAY_DL_MS)) == 0; CONDERROR(ul_result.pusch[i].dci.rnti == rnti and not msg3_retx, "No UL txs allowed except for Msg3 before user received Msg4\n"); } } else if (not userinfo.msg3_tic.is_valid()) { // Not Msg3 sched TTI for (uint32_t i = 0; i < ul_result.nof_dci_elems; ++i) { CONDERROR(ul_result.pusch[i].dci.rnti == rnti, "No UL newtxs allowed before user received Msg4\n"); } } } } for (uint32_t i = 0; i < ul_result.nof_dci_elems; ++i) { auto& pusch_alloc = ul_result.pusch[i]; if (not pusch_alloc.needs_pdcch) { // can be adaptive retx or msg3 auto& ue = users[pusch_alloc.dci.rnti]; if (tic.tic_tx_ul() == ue.msg3_tic) { msg3_count--; } } } CONDERROR(msg3_count > 0, "There are pending msg3 that do not belong to any active UE\n"); return SRSLTE_SUCCESS; } /** * Individual tests: * - All RARs belong to a user that just PRACHed * - All DL/UL data allocs have a valid RNTI */ int user_state_sched_tester::test_ctrl_info(uint32_t enb_cc_idx, const sched_interface::dl_sched_res_t& dl_result, const sched_interface::ul_sched_res_t& ul_result) { /* TEST: Ensure there are no spurious RARs that do not belong to any user */ for (uint32_t i = 0; i < dl_result.nof_rar_elems; ++i) { for (uint32_t j = 0; j < dl_result.rar[i].nof_grants; ++j) { uint32_t prach_tti = dl_result.rar[i].msg3_grant[j].data.prach_tti; uint32_t preamble_idx = dl_result.rar[i].msg3_grant[j].data.preamble_idx; auto it = std::find_if(users.begin(), users.end(), [&](const std::pair& u) { return u.second.preamble_idx == preamble_idx and ((uint32_t)u.second.prach_tic.tti_rx() == prach_tti); }); CONDERROR(it == users.end(), "There was a RAR allocation with no associated user"); CONDERROR(it->second.user_cfg.supported_cc_list[0].enb_cc_idx != enb_cc_idx, "The allocated RAR is in the wrong cc\n"); } } /* TEST: All DL allocs have a correct rnti */ std::set alloc_rntis; for (uint32_t i = 0; i < dl_result.nof_data_elems; ++i) { uint16_t rnti = dl_result.data[i].dci.rnti; CONDERROR(alloc_rntis.count(rnti) > 0, "The user rnti=0x%x got allocated multiple times in DL\n", rnti); CONDERROR(users.count(rnti) == 0, "The user rnti=0x%x allocated in DL does not exist\n", rnti); alloc_rntis.insert(rnti); } /* TEST: All UL allocs have a correct rnti */ alloc_rntis.clear(); for (uint32_t i = 0; i < ul_result.nof_dci_elems; ++i) { uint16_t rnti = ul_result.pusch[i].dci.rnti; CONDERROR(alloc_rntis.count(rnti) > 0, "The user rnti=0x%x got allocated multiple times in UL\n", rnti); CONDERROR(users.count(rnti) == 0, "The user rnti=0x%x allocated in UL does not exist\n", rnti); alloc_rntis.insert(rnti); } return SRSLTE_SUCCESS; } /** * Tests whether the SCells are correctly activated. Individual tests: * - no DL and UL allocations in inactive carriers */ int user_state_sched_tester::test_scell_activation(uint32_t enb_cc_idx, const sched_interface::dl_sched_res_t& dl_result, const sched_interface::ul_sched_res_t& ul_result) { for (auto& iter : users) { uint16_t rnti = iter.first; ue_state& userinfo = iter.second; auto it = std::find_if(userinfo.user_cfg.supported_cc_list.begin(), userinfo.user_cfg.supported_cc_list.end(), [enb_cc_idx](const sched::ue_cfg_t::cc_cfg_t& cc) { return cc.enb_cc_idx == enb_cc_idx; }); if (it == userinfo.user_cfg.supported_cc_list.end() or not it->active) { // cell not active. Ensure data allocations are not made for (uint32_t i = 0; i < dl_result.nof_data_elems; ++i) { CONDERROR(dl_result.data[i].dci.rnti == rnti, "Allocated user in inactive carrier\n"); } for (uint32_t i = 0; i < ul_result.nof_dci_elems; ++i) { CONDERROR(ul_result.pusch[i].needs_pdcch and ul_result.pusch[i].dci.rnti == rnti, "Allocated user in inactive carrier\n"); } } else { uint32_t ue_cc_idx = std::distance(userinfo.user_cfg.supported_cc_list.begin(), it); for (uint32_t i = 0; i < dl_result.nof_data_elems; ++i) { if (dl_result.data[i].dci.rnti == rnti) { CONDERROR(dl_result.data[i].dci.ue_cc_idx != ue_cc_idx, "User cell index was incorrectly set\n"); } } for (uint32_t i = 0; i < ul_result.nof_dci_elems; ++i) { if (ul_result.pusch[i].needs_pdcch and ul_result.pusch[i].dci.rnti == rnti) { CONDERROR(ul_result.pusch[i].dci.ue_cc_idx != ue_cc_idx, "The user cell index was incorrectly set\n"); } } } } return SRSLTE_SUCCESS; } int user_state_sched_tester::test_all(uint32_t enb_cc_idx, const sched_interface::dl_sched_res_t& dl_result, const sched_interface::ul_sched_res_t& ul_result) { TESTASSERT(test_ra(enb_cc_idx, dl_result, ul_result) == SRSLTE_SUCCESS); TESTASSERT(test_ctrl_info(enb_cc_idx, dl_result, ul_result) == SRSLTE_SUCCESS); TESTASSERT(test_scell_activation(enb_cc_idx, dl_result, ul_result) == SRSLTE_SUCCESS); return SRSLTE_SUCCESS; } void sched_result_stats::process_results(const tti_params_t& tti_params, const std::vector& dl_result, const std::vector& ul_result) { for (uint32_t ccidx = 0; ccidx < dl_result.size(); ++ccidx) { for (uint32_t i = 0; i < dl_result[ccidx].nof_data_elems; ++i) { user_stats* user = get_user(dl_result[ccidx].data[i].dci.rnti); user->tot_dl_sched_data[ccidx] += dl_result[ccidx].data[i].tbs[0]; user->tot_dl_sched_data[ccidx] += dl_result[ccidx].data[i].tbs[1]; } for (uint32_t i = 0; i < ul_result[ccidx].nof_dci_elems; ++i) { user_stats* user = get_user(ul_result[ccidx].pusch[i].dci.rnti); user->tot_ul_sched_data[ccidx] += ul_result[ccidx].pusch[i].tbs; } } } sched_result_stats::user_stats* sched_result_stats::get_user(uint16_t rnti) { if (users.count(rnti) != 0) { return &users[rnti]; } users[rnti].rnti = rnti; users[rnti].tot_dl_sched_data.resize(cell_params.size(), 0); users[rnti].tot_ul_sched_data.resize(cell_params.size(), 0); return &users[rnti]; } /*********************** * Common Sched Tester **********************/ const sched::ue_cfg_t* common_sched_tester::get_current_ue_cfg(uint16_t rnti) const { auto it = ue_db.find(rnti); if (it == ue_db.end()) { return nullptr; } return &it->second.get_ue_cfg(); } int common_sched_tester::sim_cfg(sim_sched_args args) { sim_args0 = std::move(args); sched::cell_cfg(sim_args0.cell_cfg); // call parent cfg ue_tester.reset(new user_state_sched_tester{sim_args0.cell_cfg}); output_tester.clear(); output_tester.reserve(sim_args0.cell_cfg.size()); for (uint32_t i = 0; i < sim_args0.cell_cfg.size(); ++i) { output_tester.emplace_back(sched_cell_params[i]); } sched_stats.reset(new sched_result_stats{sim_args0.cell_cfg}); tester_log = sim_args0.sim_log; return SRSLTE_SUCCESS; } int common_sched_tester::add_user(uint16_t rnti, const ue_cfg_t& ue_cfg_) { CONDERROR(ue_cfg(rnti, ue_cfg_) != SRSLTE_SUCCESS, "Configuring new user rnti=0x%x to sched\n", rnti); // CONDERROR(!srslte_prach_tti_opportunity_config_fdd( // sched_cell_params[CARRIER_IDX].cfg.prach_config, tti_info.tti_params.tti_rx, -1), // "New user added in a non-PRACH TTI\n"); dl_sched_rar_info_t rar_info = {}; rar_info.prach_tti = tti_info.tti_params.tti_rx; rar_info.temp_crnti = rnti; rar_info.msg3_size = 7; rar_info.preamble_idx = tti_info.nof_prachs++; uint32_t pcell_idx = ue_cfg_.supported_cc_list[0].enb_cc_idx; dl_rach_info(pcell_idx, rar_info); ue_tester->add_user(rnti, rar_info.preamble_idx, ue_cfg_); tester_log->info("Adding user rnti=0x%x\n", rnti); return SRSLTE_SUCCESS; } void common_sched_tester::rem_user(uint16_t rnti) { tester_log->info("Removing user rnti=0x%x\n", rnti); sched::ue_rem(rnti); ue_tester->rem_user(rnti); } void common_sched_tester::new_test_tti() { if (not tic.is_valid()) { tic.set_start_tti(sim_args0.start_tti); } else { tic++; } tti_info.tti_params = tti_params_t{tic.tti_rx()}; tti_info.nof_prachs = 0; tti_info.dl_sched_result.clear(); tti_info.ul_sched_result.clear(); tti_info.dl_sched_result.resize(sched_cell_params.size()); tti_info.ul_sched_result.resize(sched_cell_params.size()); tester_log->step(tti_info.tti_params.tti_rx); ue_tester->new_tti(tti_info.tti_params.tti_rx); } int common_sched_tester::process_ack_txs() { /* check if user was removed. If so, clean respective acks */ erase_if(to_ack, [this](std::pair& elem) { return this->ue_db.count(elem.second.rnti) == 0; }); erase_if(to_ul_ack, [this](std::pair& elem) { return this->ue_db.count(elem.second.rnti) == 0; }); /* Ack DL HARQs */ for (const auto& ack_it : to_ack) { if (ack_it.second.tti != tti_info.tti_params.tti_rx) { continue; } const ack_info_t& dl_ack = ack_it.second; const srsenb::dl_harq_proc& h = ue_db[dl_ack.rnti].get_dl_harq(ack_it.second.dl_harq.get_id(), dl_ack.ue_cc_idx); const srsenb::dl_harq_proc& hack = dl_ack.dl_harq; CONDERROR(hack.is_empty(), "The acked DL harq was not active\n"); bool ret = false; for (uint32_t tb = 0; tb < SRSLTE_MAX_TB; ++tb) { if (dl_ack.dl_harq.is_empty(tb)) { continue; } ret |= dl_ack_info(tti_info.tti_params.tti_rx, dl_ack.rnti, dl_ack.enb_cc_idx, tb, dl_ack.ack) > 0; } CONDERROR(not ret, "The dl harq proc that was ACKed does not exist\n"); if (dl_ack.ack) { CONDERROR(!h.is_empty(), "ACKed dl harq was not emptied\n"); CONDERROR(h.has_pending_retx(0, tti_info.tti_params.tti_tx_dl), "ACKed dl harq still has pending retx\n"); tester_log->info( "DL ACK tti=%u rnti=0x%x pid=%d\n", tti_info.tti_params.tti_rx, dl_ack.rnti, dl_ack.dl_harq.get_id()); } else { tester_log->info( "DL NACK tti=%u rnti=0x%x pid=%d\n", tti_info.tti_params.tti_rx, dl_ack.rnti, dl_ack.dl_harq.get_id()); CONDERROR(h.is_empty() and hack.nof_retx(0) + 1 < hack.max_nof_retx(), "NACKed DL harq got emptied\n"); } } /* Ack UL HARQs */ for (const auto& ack_it : to_ul_ack) { if (ack_it.first != tti_info.tti_params.tti_rx) { continue; } const ul_ack_info_t& ul_ack = ack_it.second; srsenb::ul_harq_proc* h = ue_db[ul_ack.rnti].get_ul_harq(tti_info.tti_params.tti_rx, ul_ack.ue_cc_idx); const srsenb::ul_harq_proc& hack = ul_ack.ul_harq; CONDERROR(h == nullptr or h->get_tti() != hack.get_tti(), "UL Harq TTI does not match the ACK TTI\n"); CONDERROR(h->is_empty(0), "The acked UL harq is not active\n"); CONDERROR(hack.is_empty(0), "The acked UL harq was not active\n"); ul_crc_info(tti_info.tti_params.tti_rx, ul_ack.rnti, ul_ack.enb_cc_idx, ul_ack.ack); CONDERROR(!h->get_pending_data(), "UL harq lost its pending data\n"); CONDERROR(!h->has_pending_ack(), "ACK/NACKed UL harq should have a pending ACK\n"); if (ul_ack.ack) { CONDERROR(!h->is_empty(), "ACKed UL harq did not get emptied\n"); CONDERROR(h->has_pending_retx(), "ACKed UL harq still has pending retx\n"); tester_log->info("UL ACK tti=%u rnti=0x%x pid=%d\n", tti_info.tti_params.tti_rx, ul_ack.rnti, hack.get_id()); } else { // NACK tester_log->info("UL NACK tti=%u rnti=0x%x pid=%d\n", tti_info.tti_params.tti_rx, ul_ack.rnti, hack.get_id()); CONDERROR(!h->is_empty() and !h->has_pending_retx(), "If NACKed, UL harq has to have pending retx\n"); CONDERROR(h->is_empty() and hack.nof_retx(0) + 1 < hack.max_nof_retx(), "Nacked UL harq did get emptied\n"); } } // erase processed acks to_ack.erase(tti_info.tti_params.tti_rx); to_ul_ack.erase(tti_info.tti_params.tti_rx); return SRSLTE_SUCCESS; } int common_sched_tester::schedule_acks() { for (uint32_t ccidx = 0; ccidx < sched_cell_params.size(); ++ccidx) { // schedule future acks for (uint32_t i = 0; i < tti_info.dl_sched_result[ccidx].nof_data_elems; ++i) { ack_info_t ack_data; ack_data.rnti = tti_info.dl_sched_result[ccidx].data[i].dci.rnti; ack_data.tti = FDD_HARQ_DELAY_DL_MS + tti_info.tti_params.tti_tx_dl; ack_data.enb_cc_idx = ccidx; ack_data.ue_cc_idx = ue_db[ack_data.rnti].get_cell_index(ccidx).second; const srsenb::dl_harq_proc& dl_h = ue_db[ack_data.rnti].get_dl_harq(tti_info.dl_sched_result[ccidx].data[i].dci.pid, ack_data.ue_cc_idx); ack_data.dl_harq = dl_h; if (ack_data.dl_harq.nof_retx(0) == 0) { ack_data.ack = randf() > sim_args0.P_retx; } else { // always ack after three retxs ack_data.ack = ack_data.dl_harq.nof_retx(0) == 3; } // Remove harq from the ack list if there was a harq rewrite auto it = to_ack.begin(); while (it != to_ack.end() and it->first < ack_data.tti) { if (it->second.rnti == ack_data.rnti and it->second.dl_harq.get_id() == ack_data.dl_harq.get_id() and it->second.ue_cc_idx == ack_data.ue_cc_idx) { CONDERROR(it->second.tti + FDD_HARQ_DELAY_UL_MS + FDD_HARQ_DELAY_DL_MS > ack_data.tti, "The retx dl harq id=%d was transmitted too soon\n", ack_data.dl_harq.get_id()); auto toerase_it = it++; to_ack.erase(toerase_it); continue; } ++it; } // add new ack to the list to_ack.insert(std::make_pair(ack_data.tti, ack_data)); } /* Schedule UL ACKs */ for (uint32_t i = 0; i < tti_info.ul_sched_result[ccidx].nof_dci_elems; ++i) { const auto& pusch = tti_info.ul_sched_result[ccidx].pusch[i]; ul_ack_info_t ack_data; ack_data.rnti = pusch.dci.rnti; ack_data.enb_cc_idx = ccidx; ack_data.ue_cc_idx = ue_db[ack_data.rnti].get_cell_index(ccidx).second; ack_data.ul_harq = *ue_db[ack_data.rnti].get_ul_harq(tti_info.tti_params.tti_tx_ul, ack_data.ue_cc_idx); ack_data.tti_tx_ul = tti_info.tti_params.tti_tx_ul; ack_data.tti_ack = tti_info.tti_params.tti_tx_ul + FDD_HARQ_DELAY_UL_MS; if (ack_data.ul_harq.nof_retx(0) == 0) { ack_data.ack = randf() > sim_args0.P_retx; } else { ack_data.ack = ack_data.ul_harq.nof_retx(0) == 2; } to_ul_ack.insert(std::make_pair(ack_data.tti_tx_ul, ack_data)); } } return SRSLTE_SUCCESS; } int common_sched_tester::process_results() { for (uint32_t i = 0; i < sched_cell_params.size(); ++i) { TESTASSERT(ue_tester->test_all(i, tti_info.dl_sched_result[i], tti_info.ul_sched_result[i]) == SRSLTE_SUCCESS); TESTASSERT(output_tester[i].test_all( tti_info.tti_params, tti_info.dl_sched_result[i], tti_info.ul_sched_result[i]) == SRSLTE_SUCCESS); } sched_stats->process_results(tti_info.tti_params, tti_info.dl_sched_result, tti_info.ul_sched_result); return SRSLTE_SUCCESS; } int common_sched_tester::process_tti_events(const tti_ev& tti_ev) { for (const tti_ev::user_cfg_ev& ue_ev : tti_ev.user_updates) { // There is a new configuration if (ue_ev.ue_cfg != nullptr) { if (not ue_tester->user_exists(ue_ev.rnti)) { // new user TESTASSERT(add_user(ue_ev.rnti, *ue_ev.ue_cfg) == SRSLTE_SUCCESS); } else { // reconfiguration TESTASSERT(ue_cfg(ue_ev.rnti, *ue_ev.ue_cfg) == SRSLTE_SUCCESS); ue_tester->user_reconf(ue_ev.rnti, *ue_ev.ue_cfg); } } // There is a user to remove if (ue_ev.rem_user) { rem_user(ue_ev.rnti); } // configure bearers if (ue_ev.bearer_cfg != nullptr) { CONDERROR(not ue_tester->user_exists(ue_ev.rnti), "User rnti=0x%x does not exist\n", ue_ev.rnti); // TODO: Instantiate more bearers bearer_ue_cfg(ue_ev.rnti, 0, ue_ev.bearer_cfg.get()); } auto* user = ue_tester->get_user_state(ue_ev.rnti); if (user != nullptr and not user->msg4_tic.is_valid() and user->msg3_tic.is_valid() and user->msg3_tic <= tic) { // Msg3 has been received but Msg4 has not been yet transmitted uint32_t pending_dl_new_data = ue_db[ue_ev.rnti].get_pending_dl_new_data(); if (pending_dl_new_data == 0) { uint32_t lcid = 0; // Use SRB0 to schedule Msg4 dl_rlc_buffer_state(ue_ev.rnti, lcid, 50, 0); dl_mac_buffer_state(ue_ev.rnti, srslte::sch_subh::cetype::CON_RES_ID); } else { // Let SRB0 Msg4 get fully transmitted } } // push UL SRs and DL packets if (ue_ev.buffer_ev != nullptr) { CONDERROR(user == nullptr, "TESTER ERROR: Trying to schedule data for user that does not exist\n"); if (ue_ev.buffer_ev->dl_data > 0 and user->msg4_tic.is_valid()) { // If Msg4 has already been tx and there DL data to transmit uint32_t lcid = 2; uint32_t pending_dl_new_data = ue_db[ue_ev.rnti].get_pending_dl_new_data(); if (user->drb_cfg_flag or pending_dl_new_data == 0) { // If RRCSetup finished if (not user->drb_cfg_flag) { // setup lcid==2 bearer sched::ue_bearer_cfg_t cfg = {}; cfg.direction = ue_bearer_cfg_t::BOTH; ue_tester->bearer_cfg(ue_ev.rnti, 2, cfg); bearer_ue_cfg(ue_ev.rnti, 2, &cfg); } // DRB is set. Update DL buffer uint32_t tot_dl_data = pending_dl_new_data + ue_ev.buffer_ev->dl_data; // TODO: derive pending based on rx dl_rlc_buffer_state(ue_ev.rnti, lcid, tot_dl_data, 0); // TODO: Check retx_queue } else { // Let SRB0 get emptied } } if (ue_ev.buffer_ev->sr_data > 0 and user->drb_cfg_flag) { uint32_t tot_ul_data = ue_db[ue_ev.rnti].get_pending_ul_new_data(tti_info.tti_params.tti_tx_ul) + ue_ev.buffer_ev->sr_data; uint32_t lcid = 2; ul_bsr(ue_ev.rnti, lcid, tot_ul_data, true); } } } return SRSLTE_SUCCESS; } int common_sched_tester::run_tti(const tti_ev& tti_events) { new_test_tti(); tester_log->info("---- tti=%u | nof_ues=%zd ----\n", tic.tti_rx(), ue_db.size()); process_tti_events(tti_events); process_ack_txs(); before_sched(); // Call scheduler for all carriers tti_info.dl_sched_result.resize(sched_cell_params.size()); for (uint32_t i = 0; i < sched_cell_params.size(); ++i) { dl_sched(tti_info.tti_params.tti_tx_dl, i, tti_info.dl_sched_result[i]); } tti_info.ul_sched_result.resize(sched_cell_params.size()); for (uint32_t i = 0; i < sched_cell_params.size(); ++i) { ul_sched(tti_info.tti_params.tti_tx_ul, i, tti_info.ul_sched_result[i]); } process_results(); TESTASSERT(schedule_acks() == SRSLTE_SUCCESS); return SRSLTE_SUCCESS; } int common_sched_tester::test_next_ttis(const std::vector& tti_events) { uint32_t next_idx = tic.is_valid() ? tic.total_count() - sim_args0.start_tti + 1 : 0; for (; next_idx < tti_events.size(); ++next_idx) { TESTASSERT(run_tti(tti_events[next_idx]) == SRSLTE_SUCCESS); } return SRSLTE_SUCCESS; }