/* * Copyright 2013-2019 Software Radio Systems Limited * * This file is part of srsLTE. * * srsLTE is free software: you can redistribute it and/or modify * it under the terms of the GNU Affero General Public License as * published by the Free Software Foundation, either version 3 of * the License, or (at your option) any later version. * * srsLTE is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Affero General Public License for more details. * * A copy of the GNU Affero General Public License can be found in * the LICENSE file in the top-level directory of this distribution * and at http://www.gnu.org/licenses/. * */ #ifndef SRSLTE_SCHEDULER_TEST_UTILS_H #define SRSLTE_SCHEDULER_TEST_UTILS_H #include "srsenb/hdr/stack/mac/scheduler.h" #include "srslte/common/test_common.h" #include "srslte/interfaces/sched_interface.h" #include #include #include /*************************** * Setup Random generators **************************/ uint32_t const seed = std::chrono::system_clock::now().time_since_epoch().count(); // uint32_t const seed = 2452071795; // uint32_t const seed = 1581009287; // prb==25 std::default_random_engine rand_gen(seed); std::uniform_real_distribution unif_dist(0, 1.0); bool check_old_pids = false; float randf() { return unif_dist(rand_gen); } template Integer rand_int(Integer lb, Integer ub) { std::uniform_int_distribution dist(lb, ub); return dist(rand_gen); } /***************************** * Setup Sched Configuration ****************************/ srsenb::sched_interface::cell_cfg_t generate_default_cell_cfg(uint32_t nof_prb) { srsenb::sched_interface::cell_cfg_t cell_cfg = {}; srslte_cell_t& cell_cfg_phy = cell_cfg.cell; /* Set PHY cell configuration */ cell_cfg_phy.id = 1; cell_cfg_phy.cp = SRSLTE_CP_NORM; cell_cfg_phy.nof_ports = 1; cell_cfg_phy.nof_prb = nof_prb; cell_cfg_phy.phich_length = SRSLTE_PHICH_NORM; cell_cfg_phy.phich_resources = SRSLTE_PHICH_R_1; cell_cfg.sibs[0].len = 18; cell_cfg.sibs[0].period_rf = 8; cell_cfg.sibs[1].len = 41; cell_cfg.sibs[1].period_rf = 16; cell_cfg.si_window_ms = 40; cell_cfg.nrb_pucch = 2; cell_cfg.prach_freq_offset = (cell_cfg_phy.nof_prb == 6) ? 0 : 2; cell_cfg.prach_rar_window = 3; cell_cfg.maxharq_msg3tx = 3; return cell_cfg; } srsenb::sched_interface::ue_cfg_t generate_default_ue_cfg() { srsenb::sched_interface::ue_cfg_t ue_cfg = {}; ue_cfg.aperiodic_cqi_period = 40; ue_cfg.maxharq_tx = 5; ue_cfg.dl_cfg.tm = SRSLTE_TM1; ue_cfg.supported_cc_list.resize(1); ue_cfg.supported_cc_list[0].enb_cc_idx = 0; ue_cfg.supported_cc_list[0].active = true; ue_cfg.ue_bearers[0].direction = srsenb::sched_interface::ue_bearer_cfg_t::BOTH; return ue_cfg; } /***************************** * Event Setup Helpers ****************************/ // Struct that represents all the events that take place in a TTI struct tti_ev { struct user_buffer_ev { uint32_t sr_data = 0; ///< update BSR uint32_t dl_data = 0; ///< update DL buffer newtx uint32_t dl_nof_retxs = 0; ///< update DL buffer retx }; struct user_cfg_ev { uint16_t rnti; std::unique_ptr ue_cfg; ///< optional ue_cfg call std::unique_ptr bearer_cfg; ///< optional bearer_cfg call std::unique_ptr buffer_ev; ///< update of a user dl/ul buffer bool rem_user = false; ///< whether to remove a ue }; std::vector user_updates; }; struct sim_sched_args { uint32_t nof_ttis; float P_retx; srsenb::sched_interface::ue_cfg_t ue_cfg; srsenb::sched_interface::ue_bearer_cfg_t bearer_cfg; std::vector cell_cfg; }; // generate all events up front struct sched_sim_events { sim_sched_args sim_args; ///< arguments used to generate TTI events std::vector tti_events; }; struct sched_sim_event_generator { uint16_t next_rnti = 70; uint32_t current_tti = 0; struct user_data { uint16_t rnti; uint32_t tti_start; uint32_t tti_duration; }; std::vector current_users; // generated events std::vector tti_events; void step_tti(uint32_t nof_ttis = 1) { current_tti += nof_ttis; if (current_tti >= tti_events.size()) { tti_events.resize(current_tti + 1); } rem_old_users(); } void step_until(uint32_t tti) { if (current_tti >= tti) { // error return; } current_tti = tti; if (current_tti >= tti_events.size()) { tti_events.resize(current_tti + 1); } rem_old_users(); } tti_ev::user_cfg_ev* add_new_default_user(uint32_t duration) { std::vector& user_updates = tti_events[current_tti].user_updates; user_updates.emplace_back(); auto& user = user_updates.back(); user.rnti = next_rnti++; // creates a user with one supported CC (PRACH stage) user.ue_cfg.reset(new srsenb::sched_interface::ue_cfg_t{generate_default_ue_cfg()}); current_users.emplace_back(); current_users.back().rnti = user.rnti; current_users.back().tti_start = current_tti; current_users.back().tti_duration = duration; return &user; } int add_dl_data(uint16_t rnti, uint32_t new_data) { TESTASSERT(user_exists(rnti)); tti_ev::user_cfg_ev* user = get_user_cfg(rnti); user->buffer_ev.reset(new tti_ev::user_buffer_ev{}); user->buffer_ev->dl_data = new_data; return SRSLTE_SUCCESS; } int add_ul_data(uint16_t rnti, uint32_t new_data) { TESTASSERT(user_exists(rnti)); tti_ev::user_cfg_ev* user = get_user_cfg(rnti); TESTASSERT(user != nullptr); user->buffer_ev.reset(new tti_ev::user_buffer_ev{}); user->buffer_ev->sr_data = new_data; return SRSLTE_SUCCESS; } tti_ev::user_cfg_ev* user_reconf(uint16_t rnti) { if (not user_exists(rnti)) { return nullptr; } tti_ev::user_cfg_ev* user = get_user_cfg(rnti); user->ue_cfg.reset(new srsenb::sched_interface::ue_cfg_t{generate_default_ue_cfg()}); return user; } private: tti_ev::user_cfg_ev* get_user_cfg(uint16_t rnti) { std::vector& user_updates = tti_events[current_tti].user_updates; auto it = std::find_if( user_updates.begin(), user_updates.end(), [&rnti](tti_ev::user_cfg_ev& user) { return user.rnti == rnti; }); if (it == user_updates.end()) { user_updates.emplace_back(); return &user_updates.back(); } return &(*it); } bool user_exists(uint16_t rnti) { return std::find_if(current_users.begin(), current_users.end(), [&rnti](const user_data& u) { return u.rnti == rnti; }) != current_users.end(); } void rem_old_users() { // remove users that pass their connection duration auto rem_it = std::remove_if(current_users.begin(), current_users.end(), [this](const user_data& u) { return u.tti_start + u.tti_duration < current_tti; }); // set the call rem_user(...) at the right tti for (auto it = rem_it; it != current_users.end(); ++it) { uint32_t rem_tti = it->tti_start + it->tti_duration; auto& l = tti_events[rem_tti].user_updates; auto user_it = std::find_if(l.begin(), l.end(), [&it](tti_ev::user_cfg_ev& u) { return it->rnti == u.rnti; }); if (user_it == l.end()) { l.emplace_back(); l.back().rem_user = true; } else { user_it->rem_user = true; } } current_users.erase(rem_it, current_users.end()); } }; int add_user(srsenb::sched* sched_ptr, uint16_t rnti, uint32_t prach_tti, uint32_t preamble_idx, uint32_t enb_cc_idx, srsenb::sched::ue_cfg_t& ue_cfg) { CONDERROR(sched_ptr->ue_cfg(rnti, ue_cfg) != SRSLTE_SUCCESS, "Configuring new user rnti=0x%x to sched\n", rnti); srsenb::sched::dl_sched_rar_info_t rar_info = {}; rar_info.prach_tti = prach_tti; rar_info.temp_crnti = rnti; rar_info.msg3_size = 7; rar_info.preamble_idx = preamble_idx; sched_ptr->dl_rach_info(enb_cc_idx, rar_info); // // setup bearers // bearer_ue_cfg(rnti, 0, &bearer_cfg); srslte::logmap::get("TEST")->info("Adding user rnti=0x%x\n", rnti); return SRSLTE_SUCCESS; } int apply_tti_events(srsenb::sched* sched_ptr, uint32_t tti, const tti_ev& events) { uint32_t prach_preamble_idx = 0; uint32_t enb_cc_idx = 0; // TODO: Users can connect from any carrier for (const tti_ev::user_cfg_ev& user_ev : events.user_updates) { // may add a new user if (user_ev.ue_cfg != nullptr) { add_user(sched_ptr, user_ev.rnti, tti, prach_preamble_idx++, enb_cc_idx, *user_ev.ue_cfg); } // may remove an existing user if (user_ev.rem_user) { sched_ptr->bearer_ue_rem(user_ev.rnti, 0); sched_ptr->ue_rem(user_ev.rnti); srslte::logmap::get("TEST")->info("Adding user rnti=0x%x\n", user_ev.rnti); } // push UL SRs and DL packets } // // may remove an existing user // if (sim_args.tti_events[tti_data.tti_rx].rem_user) { // uint16_t rnti = sim_args.tti_events[tti_data.tti_rx].rem_rnti; // bearer_ue_rem(rnti, 0); // ue_rem(rnti); // rem_user(rnti); // log_global->info("[TESTER] Removing user rnti=0x%x\n", rnti); // } // // // push UL SRs and DL packets // for (auto& e : sim_args.tti_events[tti_data.tti_rx].users) { // if (e.second.sr_data > 0 and tester_ues[e.first].drb_cfg_flag) { // uint32_t tot_ul_data = ue_db[e.first].get_pending_ul_new_data(tti_data.tti_tx_ul) + e.second.sr_data; // uint32_t lcid = 0; // ul_bsr(e.first, lcid, tot_ul_data, true); // } // if (e.second.dl_data > 0 and tester_ues[e.first].msg3_tti >= 0 and // tester_ues[e.first].msg3_tti < (int)tti_data.tti_rx) { // // If Msg4 not yet sent, allocate data in SRB0 buffer // uint32_t lcid = (tester_ues[e.first].msg4_tti >= 0) ? 2 : 0; // uint32_t pending_dl_new_data = ue_db[e.first].get_pending_dl_new_data(); // if (lcid == 2 and not tester_ues[e.first].drb_cfg_flag) { // // If RRCSetup finished // if (pending_dl_new_data == 0) { // // setup lcid==2 bearer // tester_ues[e.first].drb_cfg_flag = true; // bearer_ue_cfg(e.first, 2, &tester_ues[e.first].bearer_cfg); // } else { // // Let SRB0 get emptied // continue; // } // } // // TODO: Does it need TTI for checking pending data? // uint32_t tot_dl_data = pending_dl_new_data + e.second.dl_data; // dl_rlc_buffer_state(e.first, lcid, tot_dl_data, 0); // } // } return SRSLTE_SUCCESS; } #endif // SRSLTE_SCHEDULER_TEST_UTILS_H