/** * * \section COPYRIGHT * * Copyright 2013-2015 The srsLTE Developers. See the * COPYRIGHT file at the top-level directory of this distribution. * * \section LICENSE * * This file is part of the srsLTE library. * * srsLTE is free software: you can redistribute it and/or modify * it under the terms of the GNU Affero General Public License as * published by the Free Software Foundation, either version 3 of * the License, or (at your option) any later version. * * srsLTE is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Affero General Public License for more details. * * A copy of the GNU Affero General Public License can be found in * the LICENSE file in the top-level directory of this distribution * and at http://www.gnu.org/licenses/. * */ #include "srsapps/ue/mac/mux.h" #include "srsapps/ue/mac/mac.h" namespace srslte { namespace ue { #define IO_IDX(lch) (lch + mac_io::MAC_LCH_CCCH_UL) #define UL_IDX(lch) (lch - mac_io::MAC_LCH_CCCH_UL) mux::mux() : pdu_msg(20) { msg3_buff.init(1, MSG3_BUFF_SZ); pdu_buff.init(1, PDU_BUFF_SZ); bzero(nof_tx_pkts, sizeof(uint32_t) * mac_io::NOF_UL_LCH); pthread_mutex_init(&mutex, NULL); msg3_has_been_transmitted = false; for (int i=0;iget(i)->isempty()) { return true; } } return false; } bool mux::is_pending_sdu(uint32_t lch_id) { lch_id += (uint32_t) mac_io::MAC_LCH_CCCH_UL; if (lch_id < mac_io::MAC_NOF_QUEUES) { return !mac_io_h->get(lch_id)->isempty(); } } void mux::set_priority(uint32_t lch_id, uint32_t set_priority, int set_PBR, uint32_t set_BSD) { pthread_mutex_lock(&mutex); if (lch_id < mac_io::NOF_UL_LCH) { priority[lch_id] = set_priority; PBR[lch_id] = set_PBR; BSD[lch_id] = set_BSD; // Insert priority in sorted idx array int new_index = 0; while(set_priority > priority_sorted[new_index] && new_index < mac_io::NOF_UL_LCH) { new_index++; } int old_index = 0; while(lch_id != lchid_sorted[old_index] && new_index < mac_io::NOF_UL_LCH) { old_index++; } if (new_index == mac_io::NOF_UL_LCH) { Error("Can't find LchID=%d in sorted list\n", lch_id); return; } // Replace goes in one direction or the other int add=new_index>old_index?1:-1; for (int i=old_index;i!=new_index;i+=add) { priority_sorted[i] = priority_sorted[i+add]; lchid_sorted[i] = lchid_sorted[i+add]; } priority_sorted[new_index] = set_priority; lchid_sorted[new_index] = lch_id; } pthread_mutex_unlock(&mutex); } void mux::pdu_release() { pdu_buff.release(); } bool mux::pdu_move_to_msg3(uint32_t pdu_sz) { if (pdu_buff.isempty()) { if (assemble_pdu(pdu_sz)) { if (pdu_buff.pending_data() < MSG3_BUFF_SZ) { pdu_buff.move_to(&msg3_buff); return true; } else { pdu_buff.release(); Error("Assembled PDU size exceeds Msg3 buffer size\n"); return false; } } else { Error("Assembling PDU\n"); return false; } } else { Error("Generating PDU: PDU pending in buffer for transmission\n"); return false; } } // Multiplexing and logical channel priorization as defined in Section 5.4.3 uint8_t* mux::pdu_pop(uint32_t pdu_sz) { if (pdu_buff.isempty()) { if (assemble_pdu(pdu_sz)) { return (uint8_t*) pdu_buff.pop(); } else { return NULL; } } else { Error("Generating PDU: PDU pending in buffer for transmission\n"); return NULL; } } void mux::append_crnti_ce_next_tx(uint16_t crnti) { pending_crnti_ce = crnti; } sch_subh::cetype bsr_format_convert(bsr_proc::bsr_format_t format) { switch(format) { case bsr_proc::LONG_BSR: return sch_subh::LONG_BSR; case bsr_proc::SHORT_BSR: return sch_subh::SHORT_BSR; case bsr_proc::TRUNC_BSR: return sch_subh::TRUNC_BSR; } } bool mux::assemble_pdu(uint32_t pdu_sz_nbits) { uint8_t *buff = (uint8_t*) pdu_buff.request(); if (!buff) { Error("Assembling PDU: Buffer is not available\n"); return false; } // Make sure pdu_sz is byte-aligned pdu_sz_nbits = 8*(pdu_sz_nbits/8); // Acquire mutex. Cannot change priorities, PBR or BSD after assemble finishes pthread_mutex_lock(&mutex); // Update Bj for (int i=0;i= 0) { Bj[i] += PBR[i]; } if (Bj[i] >= BSD[i]) { Bj[i] = BSD[i]; } } // Logical Channel Procedure uint32_t sdu_sz = 0; pdu_msg.init(pdu_sz_nbits/8, true); // MAC control element for C-RNTI or data from UL-CCCH bool is_first = true; if (!allocate_sdu(UL_IDX(mac_io::MAC_LCH_CCCH_UL), &pdu_msg, &is_first)) { if (pending_crnti_ce) { if (pdu_msg.new_subh()) { pdu_msg.next(); if (!pdu_msg.get()->set_c_rnti(pending_crnti_ce)) { Warning("Pending C-RNTI CE could not be inserted in MAC PDU\n"); } } } } pending_crnti_ce = 0; uint32_t bsr_payload_sz = bsr_procedure->need_to_send_bsr_on_ul_grant(pdu_msg.rem_size()); bsr_proc::bsr_t bsr; // MAC control element for BSR, with exception of BSR included for padding; sch_subh *bsr_subh = NULL; if (bsr_payload_sz) { Info("Including BSR CE size %d\n", bsr_payload_sz); if (pdu_msg.new_subh()) { pdu_msg.next(); bsr_subh = pdu_msg.get(); pdu_msg.update_space_ce(bsr_payload_sz); } } // MAC control element for PHR // TODO // data from any Logical Channel, except data from UL-CCCH; // first only those with positive Bj for (int i=0;i 0 || PBR[i] < 0) && res) { res = allocate_sdu(lchid_sorted[i], &pdu_msg, &sdu_sz, &is_first); if (res && PBR[i] >= 0) { Bj[i] -= sdu_sz; } } } // If resources remain, allocate regardless of their Bj value for (int i=0;igenerate_bsr_on_ul_grant(pdu_msg.rem_size(), &bsr); // Insert Padding BSR if not inserted Regular/Periodic BSR if (!bsr_payload_sz && send_bsr) { if (pdu_msg.new_subh()) { pdu_msg.next(); bsr_subh = pdu_msg.get(); } } // And set the BSR if (bsr_subh) { bsr_subh->set_bsr(bsr.buff_size, bsr_format_convert(bsr.format), bsr_payload_sz?false:true); } pthread_mutex_unlock(&mutex); /* Release all SDUs */ for (int i=0;i 0) { mac_io_h->get(IO_IDX(i))->release(); nof_tx_pkts[i]--; } } Info("Assembled MAC PDU msg size %d/%d bytes\n", pdu_msg.size(), pdu_sz_nbits/8); //pdu_msg.fprint(stdout); /* Generate MAC PDU and save to buffer */ if (pdu_msg.write_packet(buff)) { pdu_buff.push(pdu_sz_nbits); } else { Error("Writing PDU message to packet\n"); return false; } return true; } bool mux::allocate_sdu(uint32_t lcid, sch_pdu *pdu_msg) { return allocate_sdu(lcid, pdu_msg, NULL, NULL); } bool mux::allocate_sdu(uint32_t lcid, sch_pdu *pdu_msg, bool *is_first) { return allocate_sdu(lcid, pdu_msg, NULL, is_first); } bool mux::allocate_sdu(uint32_t lcid, sch_pdu *pdu_msg, uint32_t *sdu_sz, bool *is_first) { // Get n-th pending SDU pointer and length uint32_t buff_len = 0; uint8_t *buff_ptr = (uint8_t*) mac_io_h->get(mac_io::MAC_LCH_CCCH_UL + lcid)->pop(&buff_len, nof_tx_pkts[lcid]); uint32_t nbytes = (buff_len-1)/8 + 1; if (buff_ptr && buff_len > 0) { // there is pending SDU to allocate if (sdu_sz) { *sdu_sz = buff_len; } if (pdu_msg->new_subh()) { // there is space for a new subheader pdu_msg->next(); if (pdu_msg->get()->set_sdu(lcid, buff_ptr, nbytes, is_first?*is_first:false)) { // new SDU could be added if (is_first) { *is_first = false; } Info("Allocated SDU lcid=%d nbytes=%d\n", lcid, nbytes); // Increase number of pop'ed packets from queue nof_tx_pkts[lcid]++; return true; } else { pdu_msg->del_subh(); } } } return false; } void mux::msg3_flush() { msg3_buff.flush(); msg3_has_been_transmitted = false; } void mux::msg3_transmitted() { msg3_has_been_transmitted = true; } bool mux::msg3_is_transmitted() { return msg3_has_been_transmitted; } /* Returns a pointer to the Msg3 buffer */ uint8_t* mux::msg3_pop(uint32_t TB_size) { uint32_t len; uint8_t *msg3 = (uint8_t*) msg3_buff.pop(&len); if (msg3) { if (len < TB_size) { // Pad with zeros without exceeding maximum buffer size if (TB_size <= MSG3_BUFF_SZ) { bzero(&msg3[len], (TB_size-len)*sizeof(uint8_t)); } else { Error("Requested TB size from Msg3 buffer exceeds buffer size (%d>%d)\n", TB_size, MSG3_BUFF_SZ); return NULL; } } } return msg3; } } }