/* * Copyright 2013-2020 Software Radio Systems Limited * * This file is part of srsLTE. * * srsLTE is free software: you can redistribute it and/or modify * it under the terms of the GNU Affero General Public License as * published by the Free Software Foundation, either version 3 of * the License, or (at your option) any later version. * * srsLTE is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Affero General Public License for more details. * * A copy of the GNU Affero General Public License can be found in * the LICENSE file in the top-level directory of this distribution * and at http://www.gnu.org/licenses/. * */ #include "srslte/asn1/rrc_asn1.h" #include "srslte/asn1/rrc_asn1_utils.h" #include "srslte/common/log_filter.h" #include "srslte/common/mac_pcap.h" #include "srslte/interfaces/ue_interfaces.h" #include "srsue/hdr/stack/mac/mac.h" #include "srsue/hdr/stack/mac/mux.h" #include "srsue/test/common/dummy_classes.h" #include #include #include using namespace srsue; using namespace srslte; #define HAVE_PCAP 0 static std::unique_ptr pcap_handle = nullptr; #define TESTASSERT(cond) \ { \ if (!(cond)) { \ std::cout << "[" << __FUNCTION__ << "][Line " << __LINE__ << "]: FAIL at " << (#cond) << std::endl; \ return SRSLTE_ERROR; \ } \ } srslte::log_ref mac_log{"MAC"}; namespace srslte { // fake classes class rlc_dummy : public srsue::rlc_dummy_interface { public: rlc_dummy(srslte::log_filter* log_) : received_bytes(0), log(log_) {} bool has_data(const uint32_t lcid) final { return ul_queues[lcid] > 0; } uint32_t get_buffer_state(const uint32_t lcid) final { return ul_queues[lcid]; } int read_pdu(uint32_t lcid, uint8_t* payload, uint32_t nof_bytes) final { if (!read_enable) { return 0; } uint32_t len = SRSLTE_MIN(ul_queues[lcid], nof_bytes); // set payload bytes to LCID so we can check later if the scheduling was correct memset(payload, lcid > 0 ? lcid : 0xf, len); // remove from UL queue ul_queues[lcid] -= len; return len; }; void write_pdu(uint32_t lcid, uint8_t* payload, uint32_t nof_bytes) final { log->debug_hex(payload, nof_bytes, "Received %d B on LCID %d\n", nof_bytes, lcid); received_bytes += nof_bytes; } void write_sdu(uint32_t lcid, uint32_t nof_bytes) { ul_queues[lcid] += nof_bytes; } uint32_t get_received_bytes() { return received_bytes; } void disable_read() { read_enable = false; } private: bool read_enable = true; uint32_t received_bytes; srslte::log_filter* log; // UL queues where key is LCID and value the queue length std::map ul_queues; }; class phy_dummy : public phy_interface_mac_lte { public: phy_dummy() : scell_cmd(0){}; void set_log(srslte::log* log_h_) { log_h = log_h_; } void reset() { last_preamble_idx = 0; last_target_power = 0; prach_delay_cnt = 0; prach_tti = 0; nof_rar_grants = 0; rar_temp_rnti = 0; rar_time_adv = 0; last_crnti = 0; prach_transmitted = false; prach_info_tx = false; } void set_prach_tti(uint32_t tti, bool reset_transmitted = true) { this->prach_tti = tti; if (reset_transmitted) { prach_transmitted = false; } } // phy_interface_mac_lte void configure_prach_params(){}; void prach_send(uint32_t preamble_idx, int allowed_subframe, float target_power_dbm, float ta_base_sec) { prach_delay_cnt = 0; last_preamble_idx = preamble_idx; last_target_power = target_power_dbm; prach_transmitted = true; prach_info_tx = true; log_h->info("PRACH will be transmitted at tti=%d, preamble_idx=%d\n", prach_tti, preamble_idx); } prach_info_t prach_get_info() { prach_info_t info = {}; if (prach_info_tx) { prach_delay_cnt++; if (prach_delay_cnt > prach_delay) { info.tti_ra = prach_tti; prach_info_tx = false; info.is_transmitted = true; log_h->info("PRACH has been transmitted\n"); } } return info; }; void sr_send(){}; int sr_last_tx_tti() { return 0; }; void set_mch_period_stop(uint32_t stop){}; // phy_interface_mac_common void set_crnti(uint16_t rnti) { last_crnti = rnti; } void set_timeadv_rar(uint32_t ta_cmd) { rar_time_adv = ta_cmd; } void set_timeadv(uint32_t ta_cmd){}; void set_activation_deactivation_scell(uint32_t cmd) { scell_cmd = cmd; }; void set_rar_grant(uint8_t grant_payload[SRSLTE_RAR_GRANT_LEN], uint16_t rnti) { memcpy(rar_payload, grant_payload, SRSLTE_RAR_GRANT_LEN); rar_temp_rnti = rnti; nof_rar_grants++; } uint32_t get_current_tti() { return 0; } float get_phr() { return 0; }; float get_pathloss_db() { return 0; }; // getter for test execution uint32_t get_scell_cmd() { return scell_cmd; } // Testing methods int dl_grant(mac* mac_h, bool ack, uint16_t rnti, uint32_t len, const uint8_t* payload) { bool ack_v[SRSLTE_MAX_CODEWORDS] = {ack, 0}; mac_interface_phy_lte::tb_action_dl_t dl_action = {}; mac_interface_phy_lte::mac_grant_dl_t dl_mac_grant = {}; // Send grant to MAC dl_mac_grant.rnti = rnti; dl_mac_grant.tb[0].ndi = dl_ndi; dl_mac_grant.tb[0].ndi_present = true; dl_mac_grant.tb[0].tbs = len; mac_h->new_grant_dl(0, dl_mac_grant, &dl_action); if (ack && !SRSLTE_RNTI_ISRAR(rnti)) { dl_ndi = !dl_ndi; } TESTASSERT(dl_action.tb[0].enabled); TESTASSERT((int)dl_action.tb[0].rv == dl_mac_grant.tb[0].rv); // Copy data and send tb_decoded memcpy(dl_action.tb[0].payload, payload, len); // print generated PDU log_h->info_hex( dl_action.tb[0].payload, dl_mac_grant.tb[0].tbs, "Generated DL PDU (%d B)\n", dl_mac_grant.tb[0].tbs); #if HAVE_PCAP pcap_handle->write_dl_crnti(dl_action.tb[0].payload, dl_mac_grant.tb[0].tbs, rnti, true, 1); #endif mac_h->tb_decoded(0, dl_mac_grant, ack_v); return 0; } int rar_and_check(mac* mac_h, bool preamble_matches, uint32_t temp_rnti) { // Generate RAR to MAC uint8_t grant[SRSLTE_RAR_GRANT_LEN] = {1}; uint32_t rar_timeadv = 16; srslte::rar_pdu rar_pdu_msg; byte_buffer.clear(); rar_pdu_msg.init_tx(&byte_buffer, 7); if (rar_pdu_msg.new_subh()) { rar_pdu_msg.get()->set_rapid(preamble_matches ? last_preamble_idx : (last_preamble_idx + 1)); rar_pdu_msg.get()->set_ta_cmd(rar_timeadv); rar_pdu_msg.get()->set_temp_crnti(temp_rnti); rar_pdu_msg.get()->set_sched_grant(grant); } rar_pdu_msg.write_packet(byte_buffer.msg); // Send RAR grant to MAC dl_grant(mac_h, true, get_rar_rnti(), 7, byte_buffer.msg); // Check MAC passes RAR grant and TA cmd to PHY if (preamble_matches) { TESTASSERT(!memcmp(rar_payload, grant, SRSLTE_RAR_GRANT_LEN)); TESTASSERT(rar_temp_rnti == temp_rnti); TESTASSERT(rar_time_adv == rar_timeadv); } return 0; } int ul_grant_and_check_tv(mac* mac_h, bool ack, uint16_t rnti, uint32_t len, const uint8_t* tv, bool is_rar = false, bool adaptive_retx = false) { mac_interface_phy_lte::tb_action_ul_t ul_action = {}; mac_interface_phy_lte::mac_grant_ul_t ul_mac_grant = {}; if (ack) { ul_ndi = !ul_ndi; } // Generate UL Grant if (!adaptive_retx) { ul_mac_grant.phich_available = !ack; ul_mac_grant.tb.ndi = ul_ndi; ul_mac_grant.tb.ndi_present = ack; } else { ul_mac_grant.hi_value = true; ul_mac_grant.phich_available = true; ul_mac_grant.tb.ndi = ul_ndi; ul_mac_grant.tb.ndi_present = true; } ul_mac_grant.is_rar = is_rar; ul_mac_grant.rnti = rnti; ul_mac_grant.tb.tbs = len; // Send grant to MAC and get action for this TB, then call tb_decoded to unlock MAC mac_h->new_grant_ul(0, ul_mac_grant, &ul_action); // print generated PDU log_h->info_hex(ul_action.tb.payload, ul_mac_grant.tb.tbs, "Generated UL PDU (%d B)\n", ul_mac_grant.tb.tbs); #if HAVE_PCAP pcap_handle->write_ul_crnti(ul_action.tb.payload, ul_mac_grant.tb.tbs, rnti, true, 1); #endif if (tv && ul_action.tb.payload) { return memcmp(ul_action.tb.payload, tv, len); } else { return 0; } } int get_last_preamble() { return last_preamble_idx; } uint32_t is_prach_transmitted() { return prach_transmitted; } uint32_t get_rar_rnti() { return (prach_tti % 10) + 1; } uint16_t get_crnti() { return last_crnti; } const static uint32_t prach_delay = 5; private: uint32_t scell_cmd = 0; uint32_t prach_delay_cnt = 0; uint32_t prach_tti = 0; bool prach_info_tx = false; bool prach_transmitted = false; float last_target_power = 0; int last_preamble_idx = -1; uint16_t last_crnti = 0; srslte::log* log_h; bool ul_ndi = false; bool dl_ndi = false; byte_buffer_t byte_buffer; uint32_t nof_rar_grants = 0; uint32_t rar_time_adv = 0; uint16_t rar_temp_rnti = 0; uint8_t rar_payload[SRSLTE_RAR_GRANT_LEN]; }; class rrc_dummy : public rrc_interface_mac { public: void ho_ra_completed(bool ra_successful) { ho_finish = true; ho_finish_successful = ra_successful; } void release_pucch_srs() { printf("%s\n", __FUNCTION__); } void run_tti(uint32_t tti) { printf("%s\n", __FUNCTION__); } void ra_problem() { rach_problem++; } bool ho_finish = false; bool ho_finish_successful = false; uint32_t rach_problem = 0; }; class stack_dummy : public stack_interface_mac { public: void init(mac* mac_, phy_interface_mac_lte* phy_) { mac_h = mac_; phy_h = phy_; } void process_pdus() final { mac_h->process_pdus(); } void wait_ra_completion(uint16_t rnti) final { phy_h->set_crnti(rnti); mac_h->notify_ra_completed(); } void start_prach_configuration() final { phy_h->configure_prach_params(); mac_h->notify_phy_config_completed(); } private: phy_interface_mac_lte* phy_h; mac* mac_h = nullptr; }; } // namespace srslte int mac_unpack_test() { // This MAC PDU contains three subheaders const uint32_t mac_header_len = 4; // Subheader 1 is SCell Activation/Deactivation CE // - 1 byte SDU payload 0x02 const uint32_t mac_pdu1_len = 1; // Subheader 2 is for LCID 1 // - 2 bytes SDU payload 0x00 0x08 const uint32_t mac_pdu2_len = 2; // Subheader 3 is for LCID 3 (RLC AM PDU with 2 B header and 54 B data) // - 56 bytes SDU payload 0x98 .. 0x89, 0x00, 0x00 const uint32_t mac_pdu3_len = 56; uint8_t dl_sch_pdu[] = {0x3b, 0x21, 0x02, 0x03, 0x02, 0x00, 0x08, 0x98, 0x1b, 0x45, 0x00, 0x05, 0xda, 0xc7, 0x23, 0x40, 0x00, 0x40, 0x11, 0xe6, 0x9b, 0xc0, 0xa8, 0x03, 0x01, 0xc0, 0xa8, 0x03, 0x02, 0xd8, 0x29, 0x13, 0x89, 0x05, 0xc6, 0x2b, 0x73, 0x00, 0x0d, 0xc3, 0xb3, 0x5c, 0xa3, 0x23, 0xad, 0x00, 0x03, 0x20, 0x1b, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x13, 0x89, 0x00, 0x00}; srslte::log_filter rlc_log("RLC"); srslte::timer_handler timers(64); rlc_log.set_level(srslte::LOG_LEVEL_DEBUG); rlc_log.set_hex_limit(100000); // dummy layers phy_dummy phy; rlc_dummy rlc(&rlc_log); rrc_dummy rrc; stack_dummy stack; // the actual MAC mac mac("MAC"); stack.init(&mac, &phy); mac.init(&phy, &rlc, &rrc, &timers, &stack); // create dummy DL action and grant and push MAC PDU mac_interface_phy_lte::tb_action_dl_t dl_action; mac_interface_phy_lte::mac_grant_dl_t mac_grant; bzero(&dl_action, sizeof(dl_action)); bzero(&mac_grant, sizeof(mac_grant)); mac_grant.rnti = 0xbeaf; mac_grant.tb[0].tbs = sizeof(dl_sch_pdu); int cc_idx = 0; // Send grant to MAC and get action for this TB, then call tb_decoded to unlock MAC mac.new_grant_dl(cc_idx, mac_grant, &dl_action); // Copy PDU into provided buffer bool dl_ack[SRSLTE_MAX_CODEWORDS] = {true, false}; memcpy(dl_action.tb[0].payload, dl_sch_pdu, sizeof(dl_sch_pdu)); dl_action.tb[0].enabled = true; mac.tb_decoded(cc_idx, mac_grant, dl_ack); // make sure MAC PDU thread picks up before stopping sleep(1); mac.run_tti(0); timers.step_all(); mac.stop(); // check length of both received RLC PDUs TESTASSERT(rlc.get_received_bytes() == mac_pdu2_len + mac_pdu3_len); // check received SCell activation command TESTASSERT(phy.get_scell_cmd() == 2); return SRSLTE_SUCCESS; } // Basic test with a single padding byte and a 10B SCH SDU int mac_ul_sch_pdu_test1() { const uint8_t tv[] = {0x3f, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01}; srslte::log_filter rlc_log("RLC"); rlc_log.set_level(srslte::LOG_LEVEL_DEBUG); rlc_log.set_hex_limit(100000); srslte::timer_handler timers(64); // dummy layers phy_dummy phy; rlc_dummy rlc(&rlc_log); rrc_dummy rrc; stack_dummy stack; // the actual MAC mac mac("MAC"); stack.init(&mac, &phy); mac.init(&phy, &rlc, &rrc, &timers, &stack); const uint16_t crnti = 0x1001; mac.set_ho_rnti(crnti, 0); // write dummy data rlc.write_sdu(1, 10); // create UL action and grant and push MAC PDU { mac_interface_phy_lte::tb_action_ul_t ul_action = {}; mac_interface_phy_lte::mac_grant_ul_t mac_grant = {}; mac_grant.rnti = crnti; // make sure MAC picks it up as valid UL grant mac_grant.tb.ndi_present = true; mac_grant.tb.ndi = true; mac_grant.tb.tbs = 12; // give room for MAC subheader, SDU and one padding byte int cc_idx = 0; // Send grant to MAC and get action for this TB, then call tb_decoded to unlock MAC mac.new_grant_ul(cc_idx, mac_grant, &ul_action); // print generated PDU mac_log->info_hex(ul_action.tb.payload, mac_grant.tb.tbs, "Generated PDU (%d B)\n", mac_grant.tb.tbs); #if HAVE_PCAP pcap_handle->write_ul_crnti(ul_action.tb.payload, mac_grant.tb.tbs, 0x1001, true, 1); #endif TESTASSERT(memcmp(ul_action.tb.payload, tv, sizeof(tv)) == 0); } // make sure MAC PDU thread picks up before stopping sleep(1); mac.run_tti(0); mac.stop(); return SRSLTE_SUCCESS; } // Basic logical channel prioritization test with 3 SCH SDUs int mac_ul_logical_channel_prioritization_test1() { // PDU layout (21 B in total) // - 2 B MAC subheader for SCH LCID=1 // - 2 B MAC subheader for SCH LCID=2 // - 1 B MAC subheader for SCH LCID=3 // - 10 B MAC SDU for LCID=1 // - 4 B MAC SDU for LCID=2 // - 2 B MAC SDU for LCID=3 const uint8_t tv[] = {0x21, 0x0a, 0x22, 0x04, 0x03, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03}; srslte::log_filter rlc_log("RLC"); rlc_log.set_level(srslte::LOG_LEVEL_DEBUG); rlc_log.set_hex_limit(100000); srslte::timer_handler timers(64); // dummy layers phy_dummy phy; rlc_dummy rlc(&rlc_log); rrc_dummy rrc; stack_dummy stack; // the actual MAC mac mac("MAC"); stack.init(&mac, &phy); mac.init(&phy, &rlc, &rrc, &timers, &stack); const uint16_t crnti = 0x1001; mac.set_ho_rnti(crnti, 0); // generate configs for three LCIDs with different priority and PBR std::vector lcids; logical_channel_config_t config = {}; config.lcid = 1; config.lcg = 1; config.PBR = 10; config.BSD = 1000; // 1000ms config.priority = 1; // highest prio lcids.push_back(config); config.lcid = 2; config.lcg = 1; config.PBR = 4; config.priority = 2; lcids.push_back(config); config.lcid = 3; config.lcg = 1; config.PBR = 2; config.priority = 3; lcids.push_back(config); // setup LCIDs in MAC for (auto& channel : lcids) { mac.setup_lcid(channel.lcid, channel.lcg, channel.priority, channel.PBR, channel.BSD); } // run TTI to setup Bj, no UL data available yet, so no BSR should be triggered mac.run_tti(0); usleep(200); // write dummy data for each LCID (except CCCH) rlc.write_sdu(1, 50); rlc.write_sdu(2, 40); rlc.write_sdu(3, 20); // create UL action and grant and push MAC PDU { mac_interface_phy_lte::tb_action_ul_t ul_action = {}; mac_interface_phy_lte::mac_grant_ul_t mac_grant = {}; mac_grant.rnti = crnti; // make sure MAC picks it up as valid UL grant mac_grant.tb.ndi_present = true; mac_grant.tb.ndi = true; mac_grant.tb.tbs = 21; // each LCID has more data to transmit than is available int cc_idx = 0; // Send grant to MAC and get action for this TB, then call tb_decoded to unlock MAC mac.new_grant_ul(cc_idx, mac_grant, &ul_action); // print generated PDU mac_log->info_hex(ul_action.tb.payload, mac_grant.tb.tbs, "Generated PDU (%d B)\n", mac_grant.tb.tbs); #if HAVE_PCAP pcap_handle->write_ul_crnti(ul_action.tb.payload, mac_grant.tb.tbs, 0x1001, true, 1); #endif TESTASSERT(memcmp(ul_action.tb.payload, tv, sizeof(tv)) == 0); } // make sure MAC PDU thread picks up before stopping sleep(1); mac.run_tti(0); mac.stop(); return SRSLTE_SUCCESS; } // Similar test like above but with a much larger UL grant, we expect that each LCID is fully served int mac_ul_logical_channel_prioritization_test2() { // PDU layout (120 B in total) // - 1 B MAC subheader for Short BSR // - 2 B MAC subheader for SCH LCID=1 // - 2 B MAC subheader for SCH LCID=2 // - 2 B MAC subheader for SCH LCID=3 // - 1 B MAC subheader for Padding // // - 1 B Short BSR // - 50 B MAC SDU for LCID=1 // - 40 B MAC SDU for LCID=2 // - 20 B MAC SDU for LCID=3 // - 1 B Padding // =120 N const uint8_t tv[] = {0x3d, 0x21, 0x32, 0x22, 0x28, 0x23, 0x14, 0x1f, 0x51, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x00}; srslte::log_filter rlc_log("RLC"); rlc_log.set_level(srslte::LOG_LEVEL_DEBUG); rlc_log.set_hex_limit(100000); srslte::timer_handler timers(64); // dummy layers phy_dummy phy; rlc_dummy rlc(&rlc_log); rrc_dummy rrc; stack_dummy stack; // the actual MAC mac mac("MAC"); stack.init(&mac, &phy); mac.init(&phy, &rlc, &rrc, &timers, &stack); const uint16_t crnti = 0x1001; mac.set_ho_rnti(crnti, 0); // generate configs for three LCIDs with different priority and PBR std::vector lcids; logical_channel_config_t config = {}; config.lcid = 1; config.lcg = 1; config.PBR = 10; config.BSD = 1000; // 1000ms config.priority = 1; // highest prio lcids.push_back(config); config.lcid = 2; config.lcg = 1; config.PBR = 4; config.priority = 2; lcids.push_back(config); config.lcid = 3; config.lcg = 1; config.PBR = 2; config.priority = 3; lcids.push_back(config); // setup LCIDs in MAC for (auto& channel : lcids) { mac.setup_lcid(channel.lcid, channel.lcg, channel.priority, channel.PBR, channel.BSD); } // write dummy data for each LCID (except CCCH) rlc.write_sdu(1, 50); rlc.write_sdu(2, 40); rlc.write_sdu(3, 20); // run TTI to setup Bj, BSR should be generated mac.run_tti(0); usleep(100); // create UL action and grant and push MAC PDU { mac_interface_phy_lte::tb_action_ul_t ul_action = {}; mac_interface_phy_lte::mac_grant_ul_t mac_grant = {}; mac_grant.rnti = crnti; // make sure MAC picks it up as valid UL grant mac_grant.tb.ndi_present = true; mac_grant.tb.ndi = true; mac_grant.tb.tbs = 120; // each LCID has more data to transmit than is available int cc_idx = 0; // Send grant to MAC and get action for this TB, then call tb_decoded to unlock MAC mac.new_grant_ul(cc_idx, mac_grant, &ul_action); // print generated PDU mac_log->info_hex(ul_action.tb.payload, mac_grant.tb.tbs, "Generated PDU (%d B)\n", mac_grant.tb.tbs); #if HAVE_PCAP pcap_handle->write_ul_crnti(ul_action.tb.payload, mac_grant.tb.tbs, 0x1001, true, 1); #endif TESTASSERT(memcmp(ul_action.tb.payload, tv, sizeof(tv)) == 0); } // make sure MAC PDU thread picks up before stopping sleep(1); mac.run_tti(0); mac.stop(); return SRSLTE_SUCCESS; } // Basic logical channel prioritization test with 2 SCH SDUs // Using default setting for dedicated bearer int mac_ul_logical_channel_prioritization_test3() { // PDU layout (21 B in total) // - 2 B MAC subheader for SCH LCID=4 // - 1 B MAC subheader for SCH LCID=3 // - 10 B MAC SDU for LCID=4 // - 8 B MAC SDU for LCID=3 const uint8_t tv[] = {0x24, 0x0a, 0x03, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03}; srslte::log_filter rlc_log("RLC"); rlc_log.set_level(srslte::LOG_LEVEL_DEBUG); rlc_log.set_hex_limit(100000); srslte::timer_handler timers(64); // dummy layers phy_dummy phy; rlc_dummy rlc(&rlc_log); rrc_dummy rrc; stack_dummy stack; // the actual MAC mac mac("MAC"); stack.init(&mac, &phy); mac.init(&phy, &rlc, &rrc, &timers, &stack); const uint16_t crnti = 0x1001; mac.set_ho_rnti(crnti, 0); // generate configs for two LCIDs with different priority and PBR std::vector lcids; logical_channel_config_t config = {}; // The config of DRB1 config.lcid = 3; config.lcg = 3; config.PBR = 8; // 8 kByte/s config.BSD = 100; // 100ms config.priority = 15; lcids.push_back(config); // DRB2 config.lcid = 4; config.lcg = 1; config.PBR = 0; // no PBR config.priority = 7; // higher prio lcids.push_back(config); // setup LCIDs in MAC for (auto& channel : lcids) { mac.setup_lcid(channel.lcid, channel.lcg, channel.priority, channel.PBR, channel.BSD); } // run TTI to setup Bj mac.run_tti(0); sleep(1); // write dummy data for each LCID rlc.write_sdu(3, 50); rlc.write_sdu(4, 50); // create UL action and grant and push MAC PDU { mac_interface_phy_lte::tb_action_ul_t ul_action = {}; mac_interface_phy_lte::mac_grant_ul_t mac_grant = {}; mac_grant.rnti = crnti; // make sure MAC picks it up as valid UL grant mac_grant.tb.ndi_present = true; mac_grant.tb.ndi = true; mac_grant.tb.tbs = 21; // each LCID has more data to transmit than is available int cc_idx = 0; // Send grant to MAC and get action for this TB, then call tb_decoded to unlock MAC mac.new_grant_ul(cc_idx, mac_grant, &ul_action); // print generated PDU mac_log->info_hex(ul_action.tb.payload, mac_grant.tb.tbs, "Generated PDU (%d B)\n", mac_grant.tb.tbs); #if HAVE_PCAP pcap_handle->write_ul_crnti(ul_action.tb.payload, mac_grant.tb.tbs, 0x1001, true, 1); #endif TESTASSERT(memcmp(ul_action.tb.payload, tv, sizeof(tv)) == 0); } // make sure MAC PDU thread picks up before stopping sleep(1); mac.run_tti(0); mac.stop(); return SRSLTE_SUCCESS; } // PDU with single SDU and short BSR int mac_ul_sch_pdu_with_short_bsr_test() { const uint8_t tv[] = {0x3f, 0x3d, 0x01, 0x02, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01}; srslte::log_filter rlc_log("RLC"); rlc_log.set_level(srslte::LOG_LEVEL_DEBUG); rlc_log.set_hex_limit(100000); srslte::timer_handler timers(64); // dummy layers phy_dummy phy; rlc_dummy rlc(&rlc_log); rrc_dummy rrc; stack_dummy stack; // the actual MAC mac mac("MAC"); stack.init(&mac, &phy); mac.init(&phy, &rlc, &rrc, &timers, &stack); const uint16_t crnti = 0x1001; mac.set_ho_rnti(crnti, 0); // generate configs for two LCIDs with different priority and PBR std::vector lcids; logical_channel_config_t config = {}; // The config of DRB1 config.lcid = 3; config.lcg = 3; config.PBR = 8; config.BSD = 100; // 100ms config.priority = 15; lcids.push_back(config); // DRB2 config.lcid = 4; config.lcg = 1; config.PBR = 0; config.priority = 7; lcids.push_back(config); // setup LCIDs in MAC for (auto& channel : lcids) { mac.setup_lcid(channel.lcid, channel.lcg, channel.priority, channel.PBR, channel.BSD); } // write dummy data rlc.write_sdu(1, 10); // generate TTI uint32 tti = 0; mac.run_tti(tti++); usleep(100); // create UL action and grant and push MAC PDU { mac_interface_phy_lte::tb_action_ul_t ul_action = {}; mac_interface_phy_lte::mac_grant_ul_t mac_grant = {}; mac_grant.rnti = crnti; // make sure MAC picks it up as valid UL grant mac_grant.tb.ndi_present = true; mac_grant.tb.ndi = true; mac_grant.tb.tbs = 14; // give room for MAC subheader, SDU and short BSR int cc_idx = 0; // Send grant to MAC and get action for this TB, then call tb_decoded to unlock MAC mac.new_grant_ul(cc_idx, mac_grant, &ul_action); // print generated PDU mac_log->info_hex(ul_action.tb.payload, mac_grant.tb.tbs, "Generated PDU (%d B)\n", mac_grant.tb.tbs); #if HAVE_PCAP pcap_handle->write_ul_crnti(ul_action.tb.payload, mac_grant.tb.tbs, 0x1001, true, 1); #endif TESTASSERT(memcmp(ul_action.tb.payload, tv, sizeof(tv)) == 0); } // make sure MAC PDU thread picks up before stopping sleep(1); mac.run_tti(tti); mac.stop(); return SRSLTE_SUCCESS; } // PDU with only padding BSR (long BSR) and the rest padding int mac_ul_sch_pdu_with_padding_bsr_test() { srslte::log_filter rlc_log("RLC"); rlc_log.set_level(srslte::LOG_LEVEL_DEBUG); rlc_log.set_hex_limit(100000); srslte::timer_handler timers(64); // dummy layers phy_dummy phy; rlc_dummy rlc(&rlc_log); rrc_dummy rrc; stack_dummy stack; // the actual MAC mac mac("MAC"); stack.init(&mac, &phy); mac.init(&phy, &rlc, &rrc, &timers, &stack); const uint16_t crnti = 0x1001; mac.set_ho_rnti(crnti, 0); // create UL action and grant and push MAC PDU { const uint8_t tv[] = {0x3e, 0x1f, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}; mac_interface_phy_lte::tb_action_ul_t ul_action = {}; mac_interface_phy_lte::mac_grant_ul_t mac_grant = {}; mac_grant.rnti = crnti; // make sure MAC picks it up as valid UL grant mac_grant.tb.ndi_present = true; mac_grant.tb.ndi = true; mac_grant.tb.tbs = 10; // give enough room for Padding BSR int cc_idx = 0; // Send grant to MAC and get action for this TB, then call tb_decoded to unlock MAC mac.new_grant_ul(cc_idx, mac_grant, &ul_action); // print generated PDU mac_log->info_hex(ul_action.tb.payload, mac_grant.tb.tbs, "Generated PDU (%d B)\n", mac_grant.tb.tbs); #if HAVE_PCAP pcap_handle->write_ul_crnti(ul_action.tb.payload, mac_grant.tb.tbs, 0x1001, true, 1); #endif TESTASSERT(memcmp(ul_action.tb.payload, tv, sizeof(tv)) == 0); } // create UL action and grant and push MAC PDU { const uint8_t tv[] = {0x1c, 0x42}; mac_interface_phy_lte::tb_action_ul_t ul_action = {}; mac_interface_phy_lte::mac_grant_ul_t mac_grant = {}; mac_grant.rnti = crnti; // make sure MAC picks it up as valid UL grant mac_grant.tb.ndi_present = true; mac_grant.tb.ndi = true; mac_grant.pid = 2; mac_grant.tb.tbs = 2; // give enough room for Padding BSR int cc_idx = 0; // Add data to multiple LCID mac.setup_lcid(1, 1, 1, -1, 0); mac.setup_lcid(2, 2, 2, -1, 0); rlc.disable_read(); rlc.write_sdu(1, 10); rlc.write_sdu(2, 100); mac.run_tti(1); // Send grant to MAC and get action for this TB, then call tb_decoded to unlock MAC mac.new_grant_ul(cc_idx, mac_grant, &ul_action); // print generated PDU mac_log->info_hex(ul_action.tb.payload, mac_grant.tb.tbs, "Generated PDU (%d B)\n", mac_grant.tb.tbs); #if HAVE_PCAP pcap_handle->write_ul_crnti(ul_action.tb.payload, mac_grant.tb.tbs, 0x1001, true, 1); #endif TESTASSERT(memcmp(ul_action.tb.payload, tv, sizeof(tv)) == 0); } // make sure MAC PDU thread picks up before stopping sleep(1); mac.run_tti(0); mac.stop(); return SRSLTE_SUCCESS; } // Single byte MAC PDU int mac_ul_sch_pdu_one_byte_test() { const uint8_t tv[] = {0x1f}; srslte::log_filter rlc_log("RLC"); rlc_log.set_level(srslte::LOG_LEVEL_DEBUG); rlc_log.set_hex_limit(100000); srslte::timer_handler timers(64); // dummy layers phy_dummy phy; rlc_dummy rlc(&rlc_log); rrc_dummy rrc; stack_dummy stack; // the actual MAC mac mac("MAC"); stack.init(&mac, &phy); mac.init(&phy, &rlc, &rrc, &timers, &stack); const uint16_t crnti = 0x1001; mac.set_ho_rnti(crnti, 0); // write dummy data rlc.write_sdu(0, 10); // create UL action and grant and push MAC PDU { mac_interface_phy_lte::tb_action_ul_t ul_action = {}; mac_interface_phy_lte::mac_grant_ul_t mac_grant = {}; mac_grant.rnti = crnti; // make sure MAC picks it up as valid UL grant mac_grant.tb.ndi_present = true; mac_grant.tb.ndi = true; mac_grant.tb.tbs = 1; int cc_idx = 0; // Send grant to MAC and get action for this TB, then call tb_decoded to unlock MAC mac.new_grant_ul(cc_idx, mac_grant, &ul_action); // print generated PDU mac_log->info_hex(ul_action.tb.payload, mac_grant.tb.tbs, "Generated PDU (%d B)\n", mac_grant.tb.tbs); #if HAVE_PCAP pcap_handle->write_ul_crnti(ul_action.tb.payload, mac_grant.tb.tbs, 0x1001, true, 1); #endif TESTASSERT(memcmp(ul_action.tb.payload, tv, sizeof(tv)) == 0); } // make sure MAC PDU thread picks up before stopping sleep(1); mac.run_tti(0); mac.stop(); return SRSLTE_SUCCESS; } // Two byte MAC PDU int mac_ul_sch_pdu_two_byte_test() { const uint8_t tv[] = {0x01, 0x01}; srslte::log_filter rlc_log("RLC"); rlc_log.set_level(srslte::LOG_LEVEL_DEBUG); rlc_log.set_hex_limit(100000); srslte::timer_handler timers(64); // dummy layers phy_dummy phy; rlc_dummy rlc(&rlc_log); rrc_dummy rrc; stack_dummy stack; // the actual MAC mac mac("MAC"); stack.init(&mac, &phy); mac.init(&phy, &rlc, &rrc, &timers, &stack); const uint16_t crnti = 0x1001; mac.set_ho_rnti(crnti, 0); // write dummy data rlc.write_sdu(1, 10); // create UL action and grant and push MAC PDU { mac_interface_phy_lte::tb_action_ul_t ul_action = {}; mac_interface_phy_lte::mac_grant_ul_t mac_grant = {}; mac_grant.rnti = crnti; // make sure MAC picks it up as valid UL grant mac_grant.tb.ndi_present = true; mac_grant.tb.ndi = true; mac_grant.tb.tbs = 2; int cc_idx = 0; // Send grant to MAC and get action for this TB, then call tb_decoded to unlock MAC mac.new_grant_ul(cc_idx, mac_grant, &ul_action); // print generated PDU mac_log->info_hex(ul_action.tb.payload, mac_grant.tb.tbs, "Generated PDU (%d B)\n", mac_grant.tb.tbs); #if HAVE_PCAP pcap_handle->write_ul_crnti(ul_action.tb.payload, mac_grant.tb.tbs, 0x1001, true, 1); #endif TESTASSERT(memcmp(ul_action.tb.payload, tv, sizeof(tv)) == 0); } // make sure MAC PDU thread picks up before stopping sleep(1); mac.run_tti(0); mac.stop(); return SRSLTE_SUCCESS; } // Three byte MAC PDU (Single byte padding, SDU header, 1 B SDU) int mac_ul_sch_pdu_three_byte_test() { const uint8_t tv[] = {0x3f, 0x01, 0x01}; srslte::log_filter rlc_log("RLC"); rlc_log.set_level(srslte::LOG_LEVEL_DEBUG); rlc_log.set_hex_limit(100000); srslte::timer_handler timers(64); // dummy layers phy_dummy phy; rlc_dummy rlc(&rlc_log); rrc_dummy rrc; stack_dummy stack; // the actual MAC mac mac("MAC"); stack.init(&mac, &phy); mac.init(&phy, &rlc, &rrc, &timers, &stack); const uint16_t crnti = 0x1001; mac.set_ho_rnti(crnti, 0); // write dummy data rlc.write_sdu(1, 1); // create UL action and grant and push MAC PDU { mac_interface_phy_lte::tb_action_ul_t ul_action = {}; mac_interface_phy_lte::mac_grant_ul_t mac_grant = {}; mac_grant.rnti = crnti; // make sure MAC picks it up as valid UL grant mac_grant.tb.ndi_present = true; mac_grant.tb.ndi = true; mac_grant.tb.tbs = 3; int cc_idx = 0; // Send grant to MAC and get action for this TB, then call tb_decoded to unlock MAC mac.new_grant_ul(cc_idx, mac_grant, &ul_action); // print generated PDU mac_log->info_hex(ul_action.tb.payload, mac_grant.tb.tbs, "Generated PDU (%d B)\n", mac_grant.tb.tbs); #if HAVE_PCAP pcap_handle->write_ul_crnti(ul_action.tb.payload, mac_grant.tb.tbs, 0x1001, true, 1); #endif TESTASSERT(memcmp(ul_action.tb.payload, tv, sizeof(tv)) == 0); } // make sure MAC PDU thread picks up before stopping sleep(1); mac.run_tti(0); mac.stop(); return SRSLTE_SUCCESS; } struct ra_test { uint32_t nof_prachs; uint32_t rar_nof_rapid; // set to zero to don't transmit RAR uint32_t rar_nof_invalid_rapid; uint16_t crnti; uint16_t temp_rnti; uint32_t nof_msg3_retx; uint32_t preamble_idx; int assume_prach_transmitted; bool send_valid_ul_grant; bool msg4_enable; bool msg4_valid_conres; bool check_ra_successful; asn1::rrc::rach_cfg_common_s rach_cfg; }; struct ra_test test; int run_mac_ra_test(struct ra_test test, mac* mac, phy_dummy* phy, uint32_t* tti_state, srslte::timer_handler* timers) { uint32_t tti = *tti_state; const uint8_t tv_msg3[] = {0x3c, 0x00, 0x01, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f}; const uint8_t tv_msg3_ce[] = {0x1b, 0x00, 0x65}; uint32_t msg4_len = 7; const uint8_t tv_msg4_nocontres[] = {0x1f, 0x1f}; const uint8_t tv_msg4_valid[] = {0x1c, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f}; const uint8_t tv_msg4_invalid[] = {0x1c, 0x0f, 0x0a, 0x0f, 0x0f, 0x0f, 0x0f}; uint16_t temp_rnti = test.temp_rnti; bool new_prach = false; for (uint32_t j = 0; j < test.nof_prachs; j++) { // In the next TTI, a BSR shall be triggered which triggers SR which triggers PRACH if (test.assume_prach_transmitted != (int)j) { phy->set_prach_tti(tti + phy->prach_delay); mac->run_tti(tti++); timers->step_all(); } // Check MAC instructs PHY to transmit PRACH TESTASSERT(phy->is_prach_transmitted()); // Test preamble index if (test.preamble_idx) { TESTASSERT(phy->get_last_preamble() == (int)test.preamble_idx); } else { TESTASSERT(phy->get_last_preamble() < test.rach_cfg.preamb_info.nof_ra_preambs.to_number()); } // TODO: Test power ramping // Check MAC does not schedule RA-RNTI before window starts for (uint32_t i = 0; i < phy->prach_delay + 3 - 1; i++) { mac->run_tti(tti); TESTASSERT(!SRSLTE_RNTI_ISRAR(mac->get_dl_sched_rnti(tti))); tti++; timers->step_all(); } bool rapid_found = false; // Check MAC schedules correct RA-RNTI during window for (uint32_t i = 0; i < test.rach_cfg.ra_supervision_info.ra_resp_win_size.to_number() && !rapid_found; i++) { mac->run_tti(tti); TESTASSERT(mac->get_dl_sched_rnti(tti) == phy->get_rar_rnti()); tti++; timers->step_all(); // Receive RAR if (test.rar_nof_rapid > 0) { rapid_found = i >= test.rar_nof_invalid_rapid; if (phy->rar_and_check(mac, rapid_found, temp_rnti)) { return -1; } } } // Run Contention Resolution if received correct RAPID if (rapid_found) { // Skip Contention resolution if preamble chosen by network if (test.preamble_idx) { break; } // Request Msg3 (re)-transmission for (uint32_t i = 0; i < test.nof_msg3_retx + 1; i++) { // Step to contention resolution. Make sure timer does not start until Msg3 is transmitted // and restarts on every retx for (int j = 0; j < test.rach_cfg.ra_supervision_info.mac_contention_resolution_timer.to_number() - 1; j++) { mac->run_tti(tti); TESTASSERT(mac->get_dl_sched_rnti(tti) == (test.crnti ? test.crnti : test.temp_rnti)); tti++; timers->step_all(); } if (i == test.rach_cfg.max_harq_msg3_tx) { phy->set_prach_tti(tti + phy->prach_delay, false); } if (test.crnti) { TESTASSERT(!phy->ul_grant_and_check_tv(mac, i == 0, temp_rnti, 3, tv_msg3_ce, i == 0)); } else { TESTASSERT(!phy->ul_grant_and_check_tv(mac, i == 0, temp_rnti, 9, tv_msg3, i == 0, i == 1)); } } if (test.nof_msg3_retx == test.rach_cfg.max_harq_msg3_tx) { TESTASSERT(mac->get_dl_sched_rnti(tti) != temp_rnti); break; } for (int i = 0; i < test.rach_cfg.ra_supervision_info.mac_contention_resolution_timer.to_number() - 1; i++) { mac->run_tti(tti); TESTASSERT(mac->get_dl_sched_rnti(tti) == (test.crnti ? test.crnti : test.temp_rnti)); tti++; timers->step_all(); if (test.msg4_enable) { if (test.crnti) { // Test a DL grant does not resolve the contention resolution if (phy->dl_grant(mac, true, test.crnti, 2, tv_msg4_nocontres)) { return -1; } TESTASSERT(phy->get_crnti() != test.crnti); // UL grant is checked later if (test.send_valid_ul_grant) { if (phy->ul_grant_and_check_tv(mac, true, test.crnti, 2, NULL)) { return -1; } break; } else if ((int)i == test.rach_cfg.ra_supervision_info.mac_contention_resolution_timer.to_number() - 2) { new_prach = true; } } else { if (phy->dl_grant( mac, true, temp_rnti, msg4_len, test.msg4_valid_conres ? tv_msg4_valid : tv_msg4_invalid)) { return -1; } if (!test.msg4_valid_conres) { new_prach = true; } break; } } } } if (new_prach) { test.assume_prach_transmitted = (int)j + 1; phy->set_prach_tti(tti + phy->prach_delay, false); TESTASSERT(mac->get_dl_sched_rnti(tti) != temp_rnti); mac->run_tti(tti++); timers->step_all(); } } // RA procedure should be completed here if (test.check_ra_successful) { mac->run_tti(tti); TESTASSERT(phy->get_crnti() == (test.crnti ? test.crnti : test.temp_rnti)); TESTASSERT(mac->get_dl_sched_rnti(tti) == (test.crnti ? test.crnti : test.temp_rnti)); tti++; timers->step_all(); } *tti_state = tti; return 0; } /* Tests MAC RA procedure specified in 5.1 of 36.321 * Currently not covered: * - Selection of groupA/groupB sequences * - Backoff timer * - PDCCH order RACH initiation * - Ignore RAR TA cmd when TA-Timer is running */ int mac_random_access_test() { uint64_t contention_id = 0xf0f0f0f0f0f; srslte::log_filter phy_log("PHY"); phy_log.set_level(srslte::LOG_LEVEL_DEBUG); phy_log.set_hex_limit(100000); srslte::log_filter rlc_log("RLC"); rlc_log.set_level(srslte::LOG_LEVEL_DEBUG); rlc_log.set_hex_limit(100000); srslte::timer_handler timers(64); // dummy layers phy_dummy phy; phy.set_log(&phy_log); rlc_dummy rlc(&rlc_log); rrc_dummy rrc; stack_dummy stack; // Configure default RACH parameters asn1::rrc::rach_cfg_common_s rach_cfg = {}; rach_cfg.preamb_info.nof_ra_preambs = asn1::rrc::rach_cfg_common_s::preamb_info_s_::nof_ra_preambs_opts::n12; rach_cfg.ra_supervision_info.preamb_trans_max = asn1::rrc::preamb_trans_max_opts::n8; rach_cfg.ra_supervision_info.ra_resp_win_size = asn1::rrc::rach_cfg_common_s::ra_supervision_info_s_::ra_resp_win_size_e_::sf4; rach_cfg.max_harq_msg3_tx = 2; rach_cfg.ra_supervision_info.mac_contention_resolution_timer = asn1::rrc::rach_cfg_common_s::ra_supervision_info_s_::mac_contention_resolution_timer_opts::sf8; // Configure MAC mac mac("MAC"); stack.init(&mac, &phy); mac.init(&phy, &rlc, &rrc, &timers, &stack); srslte::mac_cfg_t mac_cfg; set_mac_cfg_t_rach_cfg_common(&mac_cfg, rach_cfg); mac.set_config(mac_cfg); // generate config for LCIDs in different LCGs than CCCH std::vector lcids; logical_channel_config_t config = {}; // The config of DRB1 config.lcid = 3; config.lcg = 3; config.PBR = 8; config.BSD = 100; // 100ms config.priority = 15; lcids.push_back(config); // setup LCIDs in MAC for (auto& channel : lcids) { mac.setup_lcid(channel.lcid, channel.lcg, channel.priority, channel.PBR, channel.BSD); } // Generate Msg3 mac.set_contention_id(contention_id); rlc.write_sdu(0, 6); // UL-CCCH with Msg3 rlc.write_sdu(3, 100); // DRB data on other LCG uint32 tti = 0; // Structure that defines the test to be executed struct ra_test my_test = {}; uint32_t test_id = 1; my_test.temp_rnti = 100; my_test.assume_prach_transmitted = -1; // Test 1: No RAR is received. // According to end of 5.1.5, UE sends up to preamb_trans_max upon which indicates RA problem to higher layers mac_log->info("\n=========== Test %d =============\n", test_id++); my_test.rach_cfg = rach_cfg; my_test.nof_prachs = rach_cfg.ra_supervision_info.preamb_trans_max.to_number(); TESTASSERT(!run_mac_ra_test(my_test, &mac, &phy, &tti, &timers)); // Make sure it triggers RRC signal mac.run_tti(tti++); TESTASSERT(rrc.rach_problem == 1); timers.step_all(); // Reset MAC mac.reset(); phy.reset(); mac.set_contention_id(contention_id); // Test 2: RAR received but no matching RAPID // The UE receives a RAR without a matching RAPID on every RAR response window TTI. // According to 5.1.5, the RA procedure is considered non successful and tries again mac_log->info("\n=========== Test %d =============\n", test_id++); my_test.rar_nof_rapid = 1; my_test.nof_prachs = 1; my_test.rar_nof_invalid_rapid = rach_cfg.ra_supervision_info.ra_resp_win_size.to_number(); TESTASSERT(!run_mac_ra_test(my_test, &mac, &phy, &tti, &timers)); // Test 3: RAR received but no matching RAPID. Test Msg3 retransmissions // On each HARQ retx, contention resolution timer must be restarted (5.1.5) // When max-HARQ-msg3-retx, contention not successful mac_log->info("\n=========== Test %d =============\n", test_id++); my_test.rar_nof_invalid_rapid = 0; my_test.nof_msg3_retx = rach_cfg.max_harq_msg3_tx; TESTASSERT(!run_mac_ra_test(my_test, &mac, &phy, &tti, &timers)); // Test 4: RAR with valid RAPID. Msg3 transmitted, Msg4 received but invalid ConRes // Contention resolution is defined in 5.1.5. If ConResID does not match, the ConRes is considered // not successful and tries again mac_log->info("\n=========== Test %d =============\n", test_id++); phy.reset(); my_test.nof_msg3_retx = 0; my_test.msg4_enable = true; TESTASSERT(!run_mac_ra_test(my_test, &mac, &phy, &tti, &timers)); // Test 5: Msg4 received and valid ConRes. In this case a valid ConResID is received and RA procedure is successful mac_log->info("\n=========== Test %d =============\n", test_id++); my_test.temp_rnti++; // Temporal C-RNTI has to change to avoid duplicate my_test.msg4_valid_conres = true; my_test.check_ra_successful = true; my_test.assume_prach_transmitted = 0; TESTASSERT(!run_mac_ra_test(my_test, &mac, &phy, &tti, &timers)); // Test 6: RA with existing C-RNTI (Sends C-RNTI MAC CE) // The transmission of C-RNTI MAC CE is only done if no CCCH is present (5.1.4). // To trigger a new RA we have to either generate more data for DRB or wait until BSR-reTX is triggered rlc.write_sdu(3, 100); phy.set_crnti(0); mac_log->info("\n=========== Test %d =============\n", test_id++); my_test.crnti = my_test.temp_rnti; my_test.temp_rnti++; // Temporal C-RNTI has to change to avoid duplicate my_test.assume_prach_transmitted = -1; my_test.send_valid_ul_grant = true; TESTASSERT(!run_mac_ra_test(my_test, &mac, &phy, &tti, &timers)); // Test 7: Test Contention based Random Access. This is used eg in HO where preamble is chosen by UE. // It is similar to Test 5 because C-RNTI is available to the UE when start the RA but // In this case we will let the procedure expire the Contention Resolution window and make sure // and RRC HO fail signal is sent to RRC. mac_log->info("\n=========== Test %d =============\n", test_id++); phy.set_prach_tti(tti + phy.prach_delay); phy.set_crnti(0); mac.start_cont_ho(); mac.run_tti(tti++); timers.step_all(); rrc.ho_finish = false; my_test.nof_prachs = rach_cfg.ra_supervision_info.preamb_trans_max.to_number(); my_test.temp_rnti++; // Temporal C-RNTI has to change to avoid duplicate my_test.msg4_valid_conres = false; my_test.assume_prach_transmitted = 0; my_test.check_ra_successful = false; my_test.send_valid_ul_grant = false; TESTASSERT(!run_mac_ra_test(my_test, &mac, &phy, &tti, &timers)); TESTASSERT(!rrc.ho_finish_successful && rrc.ho_finish); // Test 8: Test Contention based Random Access. Same as above but we let the procedure finish successfully. mac_log->info("\n=========== Test %d =============\n", test_id++); phy.set_prach_tti(tti + phy.prach_delay); phy.set_crnti(0); mac.start_cont_ho(); mac.run_tti(tti++); timers.step_all(); rrc.ho_finish = false; my_test.nof_prachs = 1; my_test.temp_rnti++; // Temporal C-RNTI has to change to avoid duplicate my_test.send_valid_ul_grant = true; TESTASSERT(!run_mac_ra_test(my_test, &mac, &phy, &tti, &timers)); TESTASSERT(rrc.ho_finish_successful && rrc.ho_finish); // Test 9: Test non-Contention based HO. Used in HO but preamble is given by the network. In addition to checking // that the given preamble is correctly passed to the PHY, in this case there is no contention. // In this first test, no RAR is received and RA procedure fails mac_log->info("\n=========== Test %d =============\n", test_id++); phy.set_prach_tti(tti + phy.prach_delay); mac.run_tti(tti++); timers.step_all(); phy.set_crnti(0); rrc.ho_finish = false; my_test.preamble_idx = 3; mac.start_noncont_ho(my_test.preamble_idx, 0); my_test.nof_prachs = rach_cfg.ra_supervision_info.preamb_trans_max.to_number(); my_test.rar_nof_invalid_rapid = rach_cfg.ra_supervision_info.ra_resp_win_size.to_number(); my_test.temp_rnti++; // Temporal C-RNTI has to change to avoid duplicate TESTASSERT(!run_mac_ra_test(my_test, &mac, &phy, &tti, &timers)); mac.run_tti(tti++); timers.step_all(); TESTASSERT(!rrc.ho_finish_successful && rrc.ho_finish); // Test 10: Test non-Contention based HO. Used in HO but preamble is given by the network. We check that // the procedure is considered successful without waiting for contention mac_log->info("\n=========== Test %d =============\n", test_id++); phy.set_prach_tti(tti + phy.prach_delay); mac.run_tti(tti++); timers.step_all(); phy.set_crnti(0); rrc.ho_finish = false; my_test.preamble_idx = 3; mac.start_noncont_ho(my_test.preamble_idx, 0); my_test.nof_prachs = 1; my_test.rar_nof_invalid_rapid = 0; my_test.check_ra_successful = true; my_test.temp_rnti++; // Temporal C-RNTI has to change to avoid duplicate TESTASSERT(!run_mac_ra_test(my_test, &mac, &phy, &tti, &timers)); mac.run_tti(tti++); timers.step_all(); TESTASSERT(rrc.ho_finish_successful && rrc.ho_finish); mac.stop(); return SRSLTE_SUCCESS; } int main(int argc, char** argv) { #if HAVE_PCAP pcap_handle = std::unique_ptr(new srslte::mac_pcap()); pcap_handle->open("mac_test.pcap"); #endif mac_log->set_level(srslte::LOG_LEVEL_DEBUG); mac_log->set_hex_limit(100000); if (mac_unpack_test()) { printf("MAC PDU unpack test failed.\n"); return -1; } if (mac_ul_sch_pdu_test1()) { printf("mac_ul_sch_pdu_test1() test failed.\n"); return -1; } if (mac_ul_logical_channel_prioritization_test1()) { printf("mac_ul_logical_channel_prioritization_test1() test failed.\n"); return -1; } if (mac_ul_logical_channel_prioritization_test2()) { printf("mac_ul_logical_channel_prioritization_test2() test failed.\n"); return -1; } if (mac_ul_logical_channel_prioritization_test3()) { printf("mac_ul_logical_channel_prioritization_test3() test failed.\n"); return -1; } if (mac_ul_sch_pdu_with_short_bsr_test()) { printf("mac_ul_sch_pdu_with_long_bsr_test() test failed.\n"); return -1; } if (mac_ul_sch_pdu_with_padding_bsr_test()) { printf("mac_ul_sch_pdu_with_padding_bsr_test() test failed.\n"); return -1; } if (mac_ul_sch_pdu_one_byte_test()) { printf("mac_ul_sch_pdu_one_byte_test() test failed.\n"); return -1; } if (mac_ul_sch_pdu_two_byte_test()) { printf("mac_ul_sch_pdu_two_byte_test() test failed.\n"); return -1; } if (mac_ul_sch_pdu_three_byte_test()) { printf("mac_ul_sch_pdu_three_byte_test() test failed.\n"); return -1; } if (mac_random_access_test()) { printf("mac_random_access_test() test failed.\n"); return -1; } return 0; }