/** * * \section COPYRIGHT * * Copyright 2013-2015 Software Radio Systems Limited * * \section LICENSE * * This file is part of the srsLTE library. * * srsLTE is free software: you can redistribute it and/or modify * it under the terms of the GNU Affero General Public License as * published by the Free Software Foundation, either version 3 of * the License, or (at your option) any later version. * * srsLTE is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Affero General Public License for more details. * * A copy of the GNU Affero General Public License can be found in * the LICENSE file in the top-level directory of this distribution * and at http://www.gnu.org/licenses/. * */ #include #include #include #include #include #include #include #include #include #include #include #include "srslte/srslte.h" #define UE_CRNTI 0x1234 #define M_CRNTI 0xFFFD #ifndef DISABLE_RF #include "srslte/phy/rf/rf.h" #include "srslte/phy/common/phy_common.h" srslte_rf_t rf; #else #warning Compiling pdsch_ue with no RF support #endif char *output_file_name = NULL; #define LEFT_KEY 68 #define RIGHT_KEY 67 #define UP_KEY 65 #define DOWN_KEY 66 srslte_cell_t cell = { 25, // nof_prb 1, // nof_ports 0, // cell_id SRSLTE_CP_NORM, // cyclic prefix SRSLTE_PHICH_NORM, // PHICH length SRSLTE_PHICH_R_1 // PHICH resources }; uint16_t c = -1; int net_port = -1; // -1 generates random dataThat means there is some problem sending samples to the device uint32_t cfi = 2; uint32_t mcs_idx = 1, last_mcs_idx = 1; int nof_frames = -1; char mimo_type_str[32] = "single"; uint32_t nof_tb = 1; uint32_t multiplex_pmi = 0; uint32_t multiplex_nof_layers = 1; int mbsfn_area_id = -1; char *rf_args = ""; float rf_amp = 0.8, rf_gain = 70.0, rf_freq = 2400000000; bool null_file_sink=false; srslte_filesink_t fsink; srslte_ofdm_t ifft; srslte_ofdm_t ifft_mbsfn; srslte_pbch_t pbch; srslte_pcfich_t pcfich; srslte_pdcch_t pdcch; srslte_pdsch_t pdsch; srslte_pdsch_cfg_t pdsch_cfg; srslte_pmch_t pmch; srslte_pdsch_cfg_t pmch_cfg; srslte_softbuffer_tx_t *softbuffers[SRSLTE_MAX_CODEWORDS]; srslte_regs_t regs; srslte_ra_dl_dci_t ra_dl; int rvidx[SRSLTE_MAX_CODEWORDS] = {0, 0}; cf_t *sf_buffer[SRSLTE_MAX_PORTS] = {NULL}, *output_buffer [SRSLTE_MAX_PORTS] = {NULL}; int sf_n_re, sf_n_samples; pthread_t net_thread; void *net_thread_fnc(void *arg); sem_t net_sem; bool net_packet_ready = false; srslte_netsource_t net_source; srslte_netsink_t net_sink; int prbset_num = 1, last_prbset_num = 1; int prbset_orig = 0; //#define DATA_BUFF_SZ 1024*128 //uint8_t data[8*DATA_BUFF_SZ], data2[DATA_BUFF_SZ]; //uint8_t data_tmp[DATA_BUFF_SZ]; #define DATA_BUFF_SZ 1024*1024 uint8_t *data[2], data2[DATA_BUFF_SZ]; uint8_t data_tmp[DATA_BUFF_SZ]; void usage(char *prog) { printf("Usage: %s [agmfoncvpuxb]\n", prog); #ifndef DISABLE_RF printf("\t-a RF args [Default %s]\n", rf_args); printf("\t-l RF amplitude [Default %.2f]\n", rf_amp); printf("\t-g RF TX gain [Default %.2f dB]\n", rf_gain); printf("\t-f RF TX frequency [Default %.1f MHz]\n", rf_freq / 1000000); #else printf("\t RF is disabled.\n"); #endif printf("\t-o output_file [Default use RF board]\n"); printf("\t-m MCS index [Default %d]\n", mcs_idx); printf("\t-n number of frames [Default %d]\n", nof_frames); printf("\t-c cell id [Default %d]\n", cell.id); printf("\t-p nof_prb [Default %d]\n", cell.nof_prb); printf("\t-M MBSFN area id [Default %d]\n", mbsfn_area_id); printf("\t-x Transmission mode[single|diversity|cdd|multiplex] [Default %s]\n", mimo_type_str); printf("\t-b Precoding Matrix Index (multiplex mode only)* [Default %d]\n", multiplex_pmi); printf("\t-w Number of codewords/layers (multiplex mode only)* [Default %d]\n", multiplex_nof_layers); printf("\t-u listen TCP port for input data (-1 is random) [Default %d]\n", net_port); printf("\t-v [set srslte_verbose to debug, default none]\n"); printf("\n"); printf("\t*: See 3GPP 36.212 Table 5.3.3.1.5-4 for more information\n"); } void parse_args(int argc, char **argv) { int opt; while ((opt = getopt(argc, argv, "aglfmoncpvutxbwM")) != -1) { switch (opt) { case 'a': rf_args = argv[optind]; break; case 'g': rf_gain = atof(argv[optind]); break; case 'l': rf_amp = atof(argv[optind]); break; case 'f': rf_freq = atof(argv[optind]); break; case 'o': output_file_name = argv[optind]; break; case 'm': mcs_idx = atoi(argv[optind]); break; case 'u': net_port = atoi(argv[optind]); break; case 'n': nof_frames = atoi(argv[optind]); break; case 'p': cell.nof_prb = atoi(argv[optind]); break; case 'c': cell.id = atoi(argv[optind]); break; case 'x': strncpy(mimo_type_str, argv[optind], 32); break; case 'b': multiplex_pmi = (uint32_t) atoi(argv[optind]); break; case 'w': multiplex_nof_layers = (uint32_t) atoi(argv[optind]); break; case 'M': mbsfn_area_id = atoi(argv[optind]); break; case 'v': srslte_verbose++; break; default: usage(argv[0]); exit(-1); } } #ifdef DISABLE_RF if (!output_file_name) { usage(argv[0]); exit(-1); } #endif } void base_init() { int i; /* Select transmission mode */ if (srslte_str2mimotype(mimo_type_str, &pdsch_cfg.mimo_type)) { ERROR("Wrong transmission mode! Allowed modes: single, diversity, cdd and multiplex"); exit(-1); } /* Configure cell and PDSCH in function of the transmission mode */ switch(pdsch_cfg.mimo_type) { case SRSLTE_MIMO_TYPE_SINGLE_ANTENNA: cell.nof_ports = 1; break; case SRSLTE_MIMO_TYPE_TX_DIVERSITY: cell.nof_ports = 2; break; case SRSLTE_MIMO_TYPE_CDD: cell.nof_ports = 2; break; case SRSLTE_MIMO_TYPE_SPATIAL_MULTIPLEX: cell.nof_ports = 2; break; default: ERROR("Transmission mode not implemented."); exit(-1); } /* Allocate memory */ for(i = 0; i < SRSLTE_MAX_CODEWORDS; i++) { data[i] = srslte_vec_malloc(sizeof(uint8_t) * SOFTBUFFER_SIZE); if (!data[i]) { perror("malloc"); exit(-1); } bzero(data[i], sizeof(uint8_t) * SOFTBUFFER_SIZE); } /* init memory */ for (i = 0; i < SRSLTE_MAX_PORTS; i++) { sf_buffer[i] = srslte_vec_malloc(sizeof(cf_t) * sf_n_re); if (!sf_buffer[i]) { perror("malloc"); exit(-1); } } for (i = 0; i < SRSLTE_MAX_PORTS; i++) { output_buffer[i] = srslte_vec_malloc(sizeof(cf_t) * sf_n_samples); if (!output_buffer[i]) { perror("malloc"); exit(-1); } bzero(output_buffer[i], sizeof(cf_t) * sf_n_samples); } /* open file or USRP */ if (output_file_name) { if (strcmp(output_file_name, "NULL")) { if (srslte_filesink_init(&fsink, output_file_name, SRSLTE_COMPLEX_FLOAT_BIN)) { fprintf(stderr, "Error opening file %s\n", output_file_name); exit(-1); } null_file_sink = false; } else { null_file_sink = true; } } else { #ifndef DISABLE_RF printf("Opening RF device...\n"); if (srslte_rf_open_multi(&rf, rf_args, cell.nof_ports)) { fprintf(stderr, "Error opening rf\n"); exit(-1); } #else printf("Error RF not available. Select an output file\n"); exit(-1); #endif } if (net_port > 0) { if (srslte_netsource_init(&net_source, "0.0.0.0", net_port, SRSLTE_NETSOURCE_TCP)) { fprintf(stderr, "Error creating input UDP socket at port %d\n", net_port); exit(-1); } if (null_file_sink) { if (srslte_netsink_init(&net_sink, "127.0.0.1", net_port+1, SRSLTE_NETSINK_TCP)) { fprintf(stderr, "Error sink\n"); exit(-1); } } if (sem_init(&net_sem, 0, 1)) { perror("sem_init"); exit(-1); } } /* create ifft object */ if (srslte_ofdm_tx_init(&ifft, SRSLTE_CP_NORM, cell.nof_prb)) { fprintf(stderr, "Error creating iFFT object\n"); exit(-1); } if (srslte_ofdm_tx_init_mbsfn(&ifft_mbsfn, SRSLTE_CP_EXT, cell.nof_prb)) { fprintf(stderr, "Error creating iFFT object\n"); exit(-1); } srslte_ofdm_set_non_mbsfn_region(&ifft_mbsfn, 2); srslte_ofdm_set_normalize(&ifft, true); srslte_ofdm_set_normalize(&ifft_mbsfn, true); if (srslte_pbch_init(&pbch)) { fprintf(stderr, "Error creating PBCH object\n"); exit(-1); } if (srslte_pbch_set_cell(&pbch, cell)) { fprintf(stderr, "Error creating PBCH object\n"); exit(-1); } if (srslte_regs_init(®s, cell)) { fprintf(stderr, "Error initiating regs\n"); exit(-1); } if (srslte_pcfich_init(&pcfich, 1)) { fprintf(stderr, "Error creating PBCH object\n"); exit(-1); } if (srslte_pcfich_set_cell(&pcfich, ®s, cell)) { fprintf(stderr, "Error creating PBCH object\n"); exit(-1); } if (srslte_regs_set_cfi(®s, cfi)) { fprintf(stderr, "Error setting CFI\n"); exit(-1); } if (srslte_pdcch_init_enb(&pdcch, cell.nof_prb)) { fprintf(stderr, "Error creating PDCCH object\n"); exit(-1); } if (srslte_pdcch_set_cell(&pdcch, ®s, cell)) { fprintf(stderr, "Error creating PDCCH object\n"); exit(-1); } if (srslte_pdsch_init_enb(&pdsch, cell.nof_prb)) { fprintf(stderr, "Error creating PDSCH object\n"); exit(-1); } if (srslte_pdsch_set_cell(&pdsch, cell)) { fprintf(stderr, "Error creating PDSCH object\n"); exit(-1); } srslte_pdsch_set_rnti(&pdsch, UE_CRNTI); if(mbsfn_area_id > -1){ if (srslte_pmch_init(&pmch, cell.nof_prb)) { fprintf(stderr, "Error creating PMCH object\n"); } srslte_pmch_set_area_id(&pmch, mbsfn_area_id); } for (i = 0; i < SRSLTE_MAX_CODEWORDS; i++) { softbuffers[i] = calloc(sizeof(srslte_softbuffer_tx_t), 1); if (!softbuffers[i]) { fprintf(stderr, "Error allocating soft buffer\n"); exit(-1); } if (srslte_softbuffer_tx_init(softbuffers[i], cell.nof_prb)) { fprintf(stderr, "Error initiating soft buffer\n"); exit(-1); } } } void base_free() { int i; for (i = 0; i < SRSLTE_MAX_CODEWORDS; i++) { srslte_softbuffer_tx_free(softbuffers[i]); if (softbuffers[i]) { free(softbuffers[i]); } } srslte_pdsch_free(&pdsch); srslte_pdcch_free(&pdcch); srslte_regs_free(®s); srslte_pbch_free(&pbch); if(mbsfn_area_id > -1){ srslte_pmch_free(&pmch); } srslte_ofdm_tx_free(&ifft_mbsfn); srslte_ofdm_tx_free(&ifft); for (i = 0; i < SRSLTE_MAX_CODEWORDS; i++) { if (data[i]) { free(data[i]); } } for (i = 0; i < SRSLTE_MAX_PORTS; i++) { if (sf_buffer[i]) { free(sf_buffer[i]); } if (output_buffer[i]) { free(output_buffer[i]); } } if (output_file_name) { if (!null_file_sink) { srslte_filesink_free(&fsink); } } else { #ifndef DISABLE_RF srslte_rf_close(&rf); #endif } if (net_port > 0) { srslte_netsource_free(&net_source); sem_close(&net_sem); } } bool go_exit = false; void sig_int_handler(int signo) { printf("SIGINT received. Exiting...\n"); if (signo == SIGINT) { go_exit = true; } } unsigned int reverse(register unsigned int x) { x = (((x & 0xaaaaaaaa) >> 1) | ((x & 0x55555555) << 1)); x = (((x & 0xcccccccc) >> 2) | ((x & 0x33333333) << 2)); x = (((x & 0xf0f0f0f0) >> 4) | ((x & 0x0f0f0f0f) << 4)); x = (((x & 0xff00ff00) >> 8) | ((x & 0x00ff00ff) << 8)); return((x >> 16) | (x << 16)); } uint32_t prbset_to_bitmask() { uint32_t mask=0; int nb = (int) ceilf((float) cell.nof_prb / srslte_ra_type0_P(cell.nof_prb)); for (int i=0;i= prbset_orig && i < prbset_orig + prbset_num) { mask = mask | (0x1<>(32-nb); } int update_radl() { /* Configure cell and PDSCH in function of the transmission mode */ switch(pdsch_cfg.mimo_type) { case SRSLTE_MIMO_TYPE_SINGLE_ANTENNA: pdsch_cfg.nof_layers = 1; nof_tb = 1; break; case SRSLTE_MIMO_TYPE_TX_DIVERSITY: pdsch_cfg.nof_layers = 2; nof_tb = 1; break; case SRSLTE_MIMO_TYPE_CDD: pdsch_cfg.nof_layers = 2; nof_tb = 2; break; case SRSLTE_MIMO_TYPE_SPATIAL_MULTIPLEX: pdsch_cfg.nof_layers = multiplex_nof_layers; nof_tb = multiplex_nof_layers; break; default: ERROR("Transmission mode not implemented."); exit(-1); } bzero(&ra_dl, sizeof(srslte_ra_dl_dci_t)); ra_dl.harq_process = 0; ra_dl.mcs_idx = mcs_idx; ra_dl.ndi = 0; ra_dl.rv_idx = rvidx[0]; ra_dl.alloc_type = SRSLTE_RA_ALLOC_TYPE0; ra_dl.type0_alloc.rbg_bitmask = prbset_to_bitmask(); ra_dl.tb_en[0] = 1; if (nof_tb > 1) { ra_dl.mcs_idx_1 = mcs_idx; ra_dl.ndi_1 = 0; ra_dl.rv_idx_1 = rvidx[1]; ra_dl.tb_en[1] = 1; } srslte_ra_pdsch_fprint(stdout, &ra_dl, cell.nof_prb); srslte_ra_dl_grant_t dummy_grant; srslte_ra_nbits_t dummy_nbits; srslte_ra_dl_dci_to_grant(&ra_dl, cell.nof_prb, UE_CRNTI, &dummy_grant); srslte_ra_dl_grant_to_nbits(&dummy_grant, cfi, cell, 0, &dummy_nbits); srslte_ra_dl_grant_fprint(stdout, &dummy_grant); dummy_grant.sf_type = SRSLTE_SF_NORM; if (pdsch_cfg.mimo_type != SRSLTE_MIMO_TYPE_SINGLE_ANTENNA) { printf("\nTransmission mode key table:\n"); printf(" Mode | 1TB | 2TB |\n"); printf("----------+---------+-----+\n"); printf("Diversity | x | |\n"); printf(" CDD | | z |\n"); printf("Multiplex | q,w,e,r | a,s |\n"); printf("\n"); printf("Type new MCS index (0-28) or mode key and press Enter: "); } else { printf("Type new MCS index (0-28) and press Enter: "); } fflush(stdout); return 0; } /* Read new MCS from stdin */ int update_control() { char input[128]; fd_set set; FD_ZERO(&set); FD_SET(0, &set); struct timeval to; to.tv_sec = 0; to.tv_usec = 0; int n = select(1, &set, NULL, NULL, &to); if (n == 1) { // stdin ready if (fgets(input, sizeof(input), stdin)) { if(input[0] == 27) { switch(input[2]) { case RIGHT_KEY: if (prbset_orig + prbset_num < (int) ceilf((float) cell.nof_prb / srslte_ra_type0_P(cell.nof_prb))) prbset_orig++; break; case LEFT_KEY: if (prbset_orig > 0) prbset_orig--; break; case UP_KEY: if (prbset_num < (int) ceilf((float) cell.nof_prb / srslte_ra_type0_P(cell.nof_prb))) prbset_num++; break; case DOWN_KEY: last_prbset_num = prbset_num; if (prbset_num > 0) prbset_num--; break; } } else { switch (input[0]) { case 'q': pdsch_cfg.mimo_type = SRSLTE_MIMO_TYPE_SPATIAL_MULTIPLEX; multiplex_pmi = 0; multiplex_nof_layers = 1; break; case 'w': pdsch_cfg.mimo_type = SRSLTE_MIMO_TYPE_SPATIAL_MULTIPLEX; multiplex_pmi = 1; multiplex_nof_layers = 1; break; case 'e': pdsch_cfg.mimo_type = SRSLTE_MIMO_TYPE_SPATIAL_MULTIPLEX; multiplex_pmi = 2; multiplex_nof_layers = 1; break; case 'r': pdsch_cfg.mimo_type = SRSLTE_MIMO_TYPE_SPATIAL_MULTIPLEX; multiplex_pmi = 3; multiplex_nof_layers = 1; break; case 'a': pdsch_cfg.mimo_type = SRSLTE_MIMO_TYPE_SPATIAL_MULTIPLEX; multiplex_pmi = 0; multiplex_nof_layers = 2; break; case 's': pdsch_cfg.mimo_type = SRSLTE_MIMO_TYPE_SPATIAL_MULTIPLEX; multiplex_pmi = 1; multiplex_nof_layers = 2; break; case 'z': pdsch_cfg.mimo_type = SRSLTE_MIMO_TYPE_CDD; break; case 'x': pdsch_cfg.mimo_type = SRSLTE_MIMO_TYPE_TX_DIVERSITY; break; default: last_mcs_idx = mcs_idx; mcs_idx = atoi(input); } } bzero(input,sizeof(input)); if (update_radl()) { printf("Trying with last known MCS index\n"); mcs_idx = last_mcs_idx; prbset_num = last_prbset_num; return update_radl(); } } return 0; } else if (n < 0) { // error perror("select"); return -1; } else { return 0; } } /** Function run in a separate thread to receive UDP data */ void *net_thread_fnc(void *arg) { int n; int rpm = 0, wpm=0; do { n = srslte_netsource_read(&net_source, &data2[rpm], DATA_BUFF_SZ-rpm); if (n > 0) { // FIXME: I assume that both transport blocks have same size in case of 2 tb are active int nbytes = 1 + (pdsch_cfg.grant.mcs[0].tbs + pdsch_cfg.grant.mcs[1].tbs - 1) / 8; rpm += n; INFO("received %d bytes. rpm=%d/%d\n",n,rpm,nbytes); wpm = 0; while (rpm >= nbytes) { // wait for packet to be transmitted sem_wait(&net_sem); memcpy(data[0], &data2[wpm], nbytes / (size_t) 2); memcpy(data[1], &data2[wpm], nbytes / (size_t) 2); INFO("Sent %d/%d bytes ready\n", nbytes, rpm); rpm -= nbytes; wpm += nbytes; net_packet_ready = true; } if (wpm > 0) { INFO("%d bytes left in buffer for next packet\n", rpm); memcpy(data2, &data2[wpm], rpm * sizeof(uint8_t)); } } else if (n == 0) { rpm = 0; } else { fprintf(stderr, "Error receiving from network\n"); exit(-1); } } while(n >= 0); return NULL; } int main(int argc, char **argv) { int nf=0, sf_idx=0, N_id_2=0; cf_t pss_signal[SRSLTE_PSS_LEN]; float sss_signal0[SRSLTE_SSS_LEN]; // for subframe 0 float sss_signal5[SRSLTE_SSS_LEN]; // for subframe 5 uint8_t bch_payload[SRSLTE_BCH_PAYLOAD_LEN]; int i; cf_t *sf_symbols[SRSLTE_MAX_PORTS]; cf_t *slot1_symbols[SRSLTE_MAX_PORTS]; srslte_dci_msg_t dci_msg; srslte_dci_location_t locations[SRSLTE_NSUBFRAMES_X_FRAME][30]; uint32_t sfn; srslte_refsignal_t csr_refs; srslte_refsignal_t mbsfn_refs; #ifdef DISABLE_RF if (argc < 3) { usage(argv[0]); exit(-1); } #endif parse_args(argc, argv); N_id_2 = cell.id % 3; sf_n_re = 2 * SRSLTE_CP_NORM_NSYMB * cell.nof_prb * SRSLTE_NRE; sf_n_samples = 2 * SRSLTE_SLOT_LEN(srslte_symbol_sz(cell.nof_prb)); cell.phich_length = SRSLTE_PHICH_NORM; cell.phich_resources = SRSLTE_PHICH_R_1; sfn = 0; prbset_num = (int) ceilf((float) cell.nof_prb / srslte_ra_type0_P(cell.nof_prb)); last_prbset_num = prbset_num; /* this *must* be called after setting slot_len_* */ base_init(); /* Generate PSS/SSS signals */ srslte_pss_generate(pss_signal, N_id_2); srslte_sss_generate(sss_signal0, sss_signal5, cell.id); /* Generate reference signals */ if(srslte_refsignal_cs_init(&csr_refs, cell.nof_prb)) { fprintf(stderr, "Error initializing equalizer\n"); exit(-1); } if(mbsfn_area_id > -1) { if(srslte_refsignal_mbsfn_init(&mbsfn_refs, cell, mbsfn_area_id)) { fprintf(stderr, "Error initializing equalizer\n"); exit(-1); } } if(srslte_refsignal_cs_set_cell(&csr_refs, cell)){ fprintf(stderr, "Error setting cell\n"); exit(-1); } for (i = 0; i < SRSLTE_MAX_PORTS; i++) { sf_symbols[i] = sf_buffer[i%cell.nof_ports]; slot1_symbols[i] = &sf_buffer[i%cell.nof_ports][SRSLTE_SLOT_LEN_RE(cell.nof_prb, cell.cp)]; } #ifndef DISABLE_RF sigset_t sigset; sigemptyset(&sigset); sigaddset(&sigset, SIGINT); sigprocmask(SIG_UNBLOCK, &sigset, NULL); signal(SIGINT, sig_int_handler); if (!output_file_name) { int srate = srslte_sampling_freq_hz(cell.nof_prb); if (srate != -1) { if (srate < 10e6) { srslte_rf_set_master_clock_rate(&rf, 4*srate); } else { srslte_rf_set_master_clock_rate(&rf, srate); } printf("Setting sampling rate %.2f MHz\n", (float) srate/1000000); float srate_rf = srslte_rf_set_tx_srate(&rf, (double) srate); if (srate_rf != srate) { fprintf(stderr, "Could not set sampling rate\n"); exit(-1); } } else { fprintf(stderr, "Invalid number of PRB %d\n", cell.nof_prb); exit(-1); } printf("Set TX gain: %.1f dB\n", srslte_rf_set_tx_gain(&rf, rf_gain)); printf("Set TX freq: %.2f MHz\n", srslte_rf_set_tx_freq(&rf, rf_freq) / 1000000); } #endif if (update_radl(sf_idx)) { exit(-1); } if (net_port > 0) { if (pthread_create(&net_thread, NULL, net_thread_fnc, NULL)) { perror("pthread_create"); exit(-1); } } /* Initiate valid DCI locations */ for (i=0;i -1){ srslte_refsignal_mbsfn_put_sf(cell, 0,csr_refs.pilots[0][sf_idx], mbsfn_refs.pilots[0][sf_idx], sf_symbols[0]); } else { for (i = 0; i < cell.nof_ports; i++) { srslte_refsignal_cs_put_sf(cell, (uint32_t) i, csr_refs.pilots[i / 2][sf_idx], sf_symbols[i]); } } srslte_pbch_mib_pack(&cell, sfn, bch_payload); if (sf_idx == 0) { srslte_pbch_encode(&pbch, bch_payload, slot1_symbols, nf%4); } srslte_pcfich_encode(&pcfich, cfi, sf_symbols, sf_idx); /* Update DL resource allocation from control port */ if (update_control(sf_idx)) { fprintf(stderr, "Error updating parameters from control port\n"); } /* Transmit PDCCH + PDSCH only when there is data to send */ if (net_port > 0) { send_data = net_packet_ready; if (net_packet_ready) { INFO("Transmitting packet\n",0); } } else { INFO("SF: %d, Generating %d random bits\n", sf_idx, pdsch_cfg.grant.mcs[0].tbs + pdsch_cfg.grant.mcs[1].tbs); for (uint32_t tb = 0; tb < SRSLTE_MAX_CODEWORDS; tb++) { if (pdsch_cfg.grant.tb_en[tb]) { for (i = 0; i < pdsch_cfg.grant.mcs[tb].tbs / 8; i++) { data[tb][i] = (uint8_t) rand(); } } } /* Uncomment this to transmit on sf 0 and 5 only */ if (sf_idx != 0 && sf_idx != 5) { send_data = true; } else { send_data = false; } } if (send_data) { if(sf_idx != 1 || mbsfn_area_id < 0) { // PDCCH + PDSCH srslte_dci_format_t dci_format; switch(pdsch_cfg.mimo_type) { case SRSLTE_MIMO_TYPE_SINGLE_ANTENNA: dci_format = SRSLTE_DCI_FORMAT1; break; case SRSLTE_MIMO_TYPE_TX_DIVERSITY: case SRSLTE_MIMO_TYPE_CDD: dci_format = SRSLTE_DCI_FORMAT2A; break; case SRSLTE_MIMO_TYPE_SPATIAL_MULTIPLEX: dci_format = SRSLTE_DCI_FORMAT2; if (multiplex_nof_layers == 1) { ra_dl.pinfo = (uint8_t) (multiplex_pmi + 1); } else { ra_dl.pinfo = (uint8_t) multiplex_pmi; } break; default: fprintf(stderr, "Wrong MIMO configuration\n"); exit(SRSLTE_ERROR); } /* Encode PDCCH */ INFO("Putting DCI to location: n=%d, L=%d\n", locations[sf_idx][0].ncce, locations[sf_idx][0].L); srslte_dci_msg_pack_pdsch(&ra_dl, dci_format, &dci_msg, cell.nof_prb, cell.nof_ports, false); if (srslte_pdcch_encode(&pdcch, &dci_msg, locations[sf_idx][0], UE_CRNTI, sf_symbols, sf_idx, cfi)) { fprintf(stderr, "Error encoding DCI message\n"); exit(-1); } /* Configure pdsch_cfg parameters */ srslte_ra_dl_grant_t grant; srslte_ra_dl_dci_to_grant(&ra_dl, cell.nof_prb, UE_CRNTI, &grant); if (srslte_pdsch_cfg_mimo(&pdsch_cfg, cell, &grant, cfi, sf_idx, rvidx, pdsch_cfg.mimo_type, multiplex_pmi)) { fprintf(stderr, "Error configuring PDSCH\n"); exit(-1); } /* Encode PDSCH */ if (srslte_pdsch_encode(&pdsch, &pdsch_cfg, softbuffers, data, UE_CRNTI, sf_symbols)) { fprintf(stderr, "Error encoding PDSCH\n"); exit(-1); } if (net_port > 0 && net_packet_ready) { if (null_file_sink) { for (uint32_t tb = 0; tb < SRSLTE_MAX_CODEWORDS; tb++) { srslte_bit_pack_vector(data[tb], data_tmp, pdsch_cfg.grant.mcs[tb].tbs); if (srslte_netsink_write(&net_sink, data_tmp, 1 + (pdsch_cfg.grant.mcs[tb].tbs - 1) / 8) < 0) { fprintf(stderr, "Error sending data through UDP socket\n"); } } } net_packet_ready = false; sem_post(&net_sem); } }else{ // We're sending MCH on subframe 1 - PDCCH + PMCH /* Encode PDCCH */ INFO("Putting DCI to location: n=%d, L=%d\n", locations[sf_idx][0].ncce, locations[sf_idx][0].L); srslte_dci_msg_pack_pdsch(&ra_dl, SRSLTE_DCI_FORMAT1, &dci_msg, cell.nof_prb, cell.nof_ports, false); if (srslte_pdcch_encode(&pdcch, &dci_msg, locations[sf_idx][0], M_CRNTI, sf_symbols, sf_idx, cfi)) { fprintf(stderr, "Error encoding DCI message\n"); exit(-1); } /* Configure pmch_cfg parameters */ srslte_ra_dl_grant_t grant; grant.nof_tb = 1; grant.mcs[0].idx = 2; grant.mcs[0].mod = SRSLTE_MOD_QPSK; grant.nof_prb = cell.nof_prb; grant.sf_type = SRSLTE_SF_MBSFN; grant.Qm[0] = srslte_mod_bits_x_symbol(grant.mcs[0].mod); srslte_dl_fill_ra_mcs(&grant.mcs[0], cell.nof_prb); for(int i = 0; i < 2; i++){ for(int j = 0; j < grant.nof_prb; j++){ grant.prb_idx[i][j] = true; } } if (srslte_pmch_cfg(&pmch_cfg, cell, &grant, cfi, sf_idx)) { fprintf(stderr, "Error configuring PMCH\n"); exit(-1); } /* Encode PMCH */ if (srslte_pmch_encode(&pmch, &pmch_cfg, softbuffers[0], data[0], mbsfn_area_id, sf_symbols)) { fprintf(stderr, "Error encoding PDSCH\n"); exit(-1); } if (net_port > 0 && net_packet_ready) { if (null_file_sink) { srslte_bit_pack_vector(data[0], data_tmp, pmch_cfg.grant.mcs[0].tbs); if (srslte_netsink_write(&net_sink, data_tmp, 1+(pmch_cfg.grant.mcs[0].tbs-1)/8) < 0) { fprintf(stderr, "Error sending data through UDP socket\n"); } } net_packet_ready = false; sem_post(&net_sem); } } } /* Transform to OFDM symbols */ if(sf_idx != 1 || mbsfn_area_id < 0){ for (i = 0; i < cell.nof_ports; i++) { srslte_ofdm_tx_sf(&ifft, sf_buffer[i], output_buffer[i]); } }else{ srslte_ofdm_tx_sf(&ifft_mbsfn, sf_buffer[0], output_buffer[0]); } /* send to file or usrp */ if (output_file_name) { if (!null_file_sink) { srslte_filesink_write_multi(&fsink, (void**) output_buffer, sf_n_samples, cell.nof_ports); } usleep(1000); } else { #ifndef DISABLE_RF float norm_factor = (float) cell.nof_prb/15/sqrtf(pdsch_cfg.grant.nof_prb); for (i = 0; i < cell.nof_ports; i++) { srslte_vec_sc_prod_cfc(output_buffer[i], rf_amp * norm_factor, output_buffer[i], SRSLTE_SF_LEN_PRB(cell.nof_prb)); } srslte_rf_send_multi(&rf, (void**) output_buffer, sf_n_samples, true, start_of_burst, false); start_of_burst=false; #endif } } nf++; sfn = (sfn + 1) % 1024; } base_free(); printf("Done\n"); exit(0); }