/* * Copyright 2013-2019 Software Radio Systems Limited * * This file is part of srsLTE. * * srsLTE is free software: you can redistribute it and/or modify * it under the terms of the GNU Affero General Public License as * published by the Free Software Foundation, either version 3 of * the License, or (at your option) any later version. * * srsLTE is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Affero General Public License for more details. * * A copy of the GNU Affero General Public License can be found in * the LICENSE file in the top-level directory of this distribution * and at http://www.gnu.org/licenses/. * */ #include "srslte/upper/pdcp_entity.h" #include "srslte/common/security.h" namespace srslte { pdcp_entity::pdcp_entity() :active(false) ,tx_count(0) { pool = byte_buffer_pool::get_instance(); log = NULL; rlc = NULL; rrc = NULL; gw = NULL; lcid = 0; sn_len_bytes = 0; do_integrity = false; do_encryption = false; rx_count = 0; cipher_algo = CIPHERING_ALGORITHM_ID_EEA0; integ_algo = INTEGRITY_ALGORITHM_ID_EIA0; pthread_mutex_init(&mutex, NULL); } pdcp_entity::~pdcp_entity() { pthread_mutex_destroy(&mutex); } void pdcp_entity::init(srsue::rlc_interface_pdcp *rlc_, srsue::rrc_interface_pdcp *rrc_, srsue::gw_interface_pdcp *gw_, srslte::log *log_, uint32_t lcid_, srslte_pdcp_config_t cfg_) { rlc = rlc_; rrc = rrc_; gw = gw_; log = log_; lcid = lcid_; cfg = cfg_; active = true; tx_count = 0; rx_count = 0; do_integrity = false; do_encryption = false; cfg = cfg_; // set length of SN field in bytes sn_len_bytes = (cfg.sn_len == 5) ? 1 : 2; } // Reestablishment procedure: 36.323 5.2 void pdcp_entity::reestablish() { // For SRBs if (cfg.is_control) { tx_count = 0; rx_count = 0; } else { // Only reset counter in RLC-UM if (rlc->rb_is_um(lcid)) { tx_count = 0; rx_count = 0; } } } // Used to stop/pause the entity (called on RRC conn release) void pdcp_entity::reset() { active = false; if (log) { log->debug("Reset %s\n", rrc->get_rb_name(lcid).c_str()); } } bool pdcp_entity::is_active() { return active; } // GW/RRC interface void pdcp_entity::write_sdu(unique_byte_buffer_t sdu, bool blocking) { log->info_hex(sdu->msg, sdu->N_bytes, "TX %s SDU, SN: %d, do_integrity = %s, do_encryption = %s", rrc->get_rb_name(lcid).c_str(), tx_count, (do_integrity) ? "true" : "false", (do_encryption) ? "true" : "false"); pthread_mutex_lock(&mutex); if (cfg.is_control) { pdcp_pack_control_pdu(tx_count, sdu.get()); if(do_integrity) { integrity_generate(sdu->msg, sdu->N_bytes-4, &sdu->msg[sdu->N_bytes-4]); } } if (cfg.is_data) { if(12 == cfg.sn_len) { pdcp_pack_data_pdu_long_sn(tx_count, sdu.get()); } else { pdcp_pack_data_pdu_short_sn(tx_count, sdu.get()); } } if(do_encryption) { cipher_encrypt(&sdu->msg[sn_len_bytes], sdu->N_bytes-sn_len_bytes, &sdu->msg[sn_len_bytes]); log->info_hex(sdu->msg, sdu->N_bytes, "TX %s SDU (encrypted)", rrc->get_rb_name(lcid).c_str()); } tx_count++; pthread_mutex_unlock(&mutex); rlc->write_sdu(lcid, std::move(sdu), blocking); } void pdcp_entity::config_security(uint8_t *k_rrc_enc_, uint8_t *k_rrc_int_, uint8_t *k_up_enc_, CIPHERING_ALGORITHM_ID_ENUM cipher_algo_, INTEGRITY_ALGORITHM_ID_ENUM integ_algo_) { for(int i=0; i<32; i++) { k_rrc_enc[i] = k_rrc_enc_[i]; k_rrc_int[i] = k_rrc_int_[i]; k_up_enc[i] = k_up_enc_[i]; } cipher_algo = cipher_algo_; integ_algo = integ_algo_; } void pdcp_entity::enable_integrity() { do_integrity = true; } void pdcp_entity::enable_encryption() { do_encryption = true; } // RLC interface void pdcp_entity::write_pdu(unique_byte_buffer_t pdu) { log->info_hex(pdu->msg, pdu->N_bytes, "RX %s PDU, do_integrity = %s, do_encryption = %s", rrc->get_rb_name(lcid).c_str(), (do_integrity) ? "true" : "false", (do_encryption) ? "true" : "false"); // Sanity check if(pdu->N_bytes <= sn_len_bytes) { return; } pthread_mutex_lock(&mutex); // Handle DRB messages if (cfg.is_data) { uint32_t sn; if (do_encryption) { cipher_decrypt(&(pdu->msg[sn_len_bytes]), rx_count, pdu->N_bytes - sn_len_bytes, &(pdu->msg[sn_len_bytes])); log->debug_hex(pdu->msg, pdu->N_bytes, "RX %s PDU (decrypted)", rrc->get_rb_name(lcid).c_str()); } if(12 == cfg.sn_len) { pdcp_unpack_data_pdu_long_sn(pdu.get(), &sn); } else { pdcp_unpack_data_pdu_short_sn(pdu.get(), &sn); } log->info_hex(pdu->msg, pdu->N_bytes, "RX %s PDU SN: %d", rrc->get_rb_name(lcid).c_str(), sn); gw->write_pdu(lcid, std::move(pdu)); } else { // Handle SRB messages if (cfg.is_control) { uint32_t sn = 0; if (do_encryption) { cipher_decrypt(&(pdu->msg[sn_len_bytes]), rx_count, pdu->N_bytes - sn_len_bytes, &(pdu->msg[sn_len_bytes])); log->info_hex(pdu->msg, pdu->N_bytes, "RX %s PDU (decrypted)", rrc->get_rb_name(lcid).c_str()); } if (do_integrity) { if (not integrity_verify(pdu->msg, rx_count, pdu->N_bytes - 4, &(pdu->msg[pdu->N_bytes - 4]))) { log->error_hex(pdu->msg, pdu->N_bytes, "%s Dropping PDU", rrc->get_rb_name(lcid).c_str()); goto exit; } } pdcp_unpack_control_pdu(pdu.get(), &sn); log->info_hex(pdu->msg, pdu->N_bytes, "RX %s PDU SN: %d", rrc->get_rb_name(lcid).c_str(), sn); } // pass to RRC rrc->write_pdu(lcid, std::move(pdu)); } exit: rx_count++; pthread_mutex_unlock(&mutex); } void pdcp_entity::integrity_generate( uint8_t *msg, uint32_t msg_len, uint8_t *mac) { switch(integ_algo) { case INTEGRITY_ALGORITHM_ID_EIA0: break; case INTEGRITY_ALGORITHM_ID_128_EIA1: security_128_eia1(&k_rrc_int[16], tx_count, cfg.bearer_id - 1, cfg.direction, msg, msg_len, mac); break; case INTEGRITY_ALGORITHM_ID_128_EIA2: security_128_eia2(&k_rrc_int[16], tx_count, cfg.bearer_id - 1, cfg.direction, msg, msg_len, mac); break; default: break; } log->debug("Integrity gen input:\n"); log->debug_hex(&k_rrc_int[16], 16, " K_rrc_int"); log->debug(" Local count: %d\n", tx_count); log->debug(" Bearer ID: %d\n", cfg.bearer_id); log->debug(" Direction: %s\n", (cfg.direction == SECURITY_DIRECTION_DOWNLINK) ? "Downlink" : "Uplink"); log->debug_hex(msg, msg_len, " Message"); log->debug_hex(mac, 4, "MAC (generated)"); } bool pdcp_entity::integrity_verify(uint8_t *msg, uint32_t count, uint32_t msg_len, uint8_t *mac) { uint8_t mac_exp[4] = {0x00}; uint8_t i = 0; bool isValid = true; switch(integ_algo) { case INTEGRITY_ALGORITHM_ID_EIA0: break; case INTEGRITY_ALGORITHM_ID_128_EIA1: security_128_eia1(&k_rrc_int[16], count, cfg.bearer_id - 1, (cfg.direction == SECURITY_DIRECTION_DOWNLINK) ? (SECURITY_DIRECTION_UPLINK) : (SECURITY_DIRECTION_DOWNLINK), msg, msg_len, mac_exp); break; case INTEGRITY_ALGORITHM_ID_128_EIA2: security_128_eia2(&k_rrc_int[16], count, cfg.bearer_id - 1, (cfg.direction == SECURITY_DIRECTION_DOWNLINK) ? (SECURITY_DIRECTION_UPLINK) : (SECURITY_DIRECTION_DOWNLINK), msg, msg_len, mac_exp); break; default: break; } log->debug("Integrity check input:\n"); log->debug_hex(&k_rrc_int[16], 16, " K_rrc_int"); log->debug(" Local count: %d\n", count); log->debug(" Bearer ID: %d\n", cfg.bearer_id); log->debug(" Direction: %s\n", (cfg.direction == SECURITY_DIRECTION_DOWNLINK) ? "Uplink" : "Downlink"); log->debug_hex(msg, msg_len, " Message"); switch(integ_algo) { case INTEGRITY_ALGORITHM_ID_EIA0: break; case INTEGRITY_ALGORITHM_ID_128_EIA1: // Intentional fall-through case INTEGRITY_ALGORITHM_ID_128_EIA2: for(i=0; i<4; i++){ if(mac[i] != mac_exp[i]){ log->error_hex(mac_exp, 4, "MAC mismatch (expected)"); log->error_hex(mac, 4, "MAC mismatch (found)"); isValid = false; break; } } if (isValid){ log->info_hex(mac_exp, 4, "MAC match"); } break; default: break; } return isValid; } void pdcp_entity::cipher_encrypt(uint8_t *msg, uint32_t msg_len, uint8_t *ct) { byte_buffer_t ct_tmp; uint8_t *k_enc; // If control plane use RRC encrytion key. If data use user plane key if (cfg.is_control) { k_enc = k_rrc_enc; } else { k_enc = k_up_enc; } switch(cipher_algo) { case CIPHERING_ALGORITHM_ID_EEA0: break; case CIPHERING_ALGORITHM_ID_128_EEA1: security_128_eea1(&(k_enc[16]), tx_count, cfg.bearer_id - 1, cfg.direction, msg, msg_len, ct_tmp.msg); memcpy(ct, ct_tmp.msg, msg_len); break; case CIPHERING_ALGORITHM_ID_128_EEA2: security_128_eea2(&(k_enc[16]), tx_count, cfg.bearer_id - 1, cfg.direction, msg, msg_len, ct_tmp.msg); memcpy(ct, ct_tmp.msg, msg_len); break; default: break; } } void pdcp_entity::cipher_decrypt(uint8_t *ct, uint32_t count, uint32_t ct_len, uint8_t *msg) { byte_buffer_t msg_tmp; uint8_t *k_enc; // If control plane use RRC encrytion key. If data use user plane key if (cfg.is_control) { k_enc = k_rrc_enc; } else { k_enc = k_up_enc; } switch(cipher_algo) { case CIPHERING_ALGORITHM_ID_EEA0: break; case CIPHERING_ALGORITHM_ID_128_EEA1: security_128_eea1(&(k_enc[16]), count, cfg.bearer_id - 1, (cfg.direction == SECURITY_DIRECTION_DOWNLINK) ? (SECURITY_DIRECTION_UPLINK) : (SECURITY_DIRECTION_DOWNLINK), ct, ct_len, msg_tmp.msg); memcpy(msg, msg_tmp.msg, ct_len); break; case CIPHERING_ALGORITHM_ID_128_EEA2: security_128_eea2(&(k_enc[16]), count, cfg.bearer_id - 1, (cfg.direction == SECURITY_DIRECTION_DOWNLINK) ? (SECURITY_DIRECTION_UPLINK) : (SECURITY_DIRECTION_DOWNLINK), ct, ct_len, msg_tmp.msg); memcpy(msg, msg_tmp.msg, ct_len); break; default: break; } } uint32_t pdcp_entity::get_dl_count() { return rx_count; } uint32_t pdcp_entity::get_ul_count() { return tx_count; } /**************************************************************************** * Pack/Unpack helper functions * Ref: 3GPP TS 36.323 v10.1.0 ***************************************************************************/ void pdcp_pack_control_pdu(uint32_t sn, byte_buffer_t *sdu) { // Make room and add header sdu->msg--; sdu->N_bytes++; *sdu->msg = sn & 0x1F; // Add MAC sdu->msg[sdu->N_bytes++] = (PDCP_CONTROL_MAC_I >> 24) & 0xFF; sdu->msg[sdu->N_bytes++] = (PDCP_CONTROL_MAC_I >> 16) & 0xFF; sdu->msg[sdu->N_bytes++] = (PDCP_CONTROL_MAC_I >> 8) & 0xFF; sdu->msg[sdu->N_bytes++] = PDCP_CONTROL_MAC_I & 0xFF; } void pdcp_unpack_control_pdu(byte_buffer_t *pdu, uint32_t *sn) { // Strip header *sn = *pdu->msg & 0x1F; pdu->msg++; pdu->N_bytes--; // Strip MAC pdu->N_bytes -= 4; // TODO: integrity check MAC } void pdcp_pack_data_pdu_short_sn(uint32_t sn, byte_buffer_t *sdu) { // Make room and add header sdu->msg--; sdu->N_bytes++; sdu->msg[0] = (PDCP_D_C_DATA_PDU << 7) | (sn & 0x7F); } void pdcp_unpack_data_pdu_short_sn(byte_buffer_t *sdu, uint32_t *sn) { // Strip header *sn = sdu->msg[0] & 0x7F; sdu->msg++; sdu->N_bytes--; } void pdcp_pack_data_pdu_long_sn(uint32_t sn, byte_buffer_t *sdu) { // Make room and add header sdu->msg -= 2; sdu->N_bytes += 2; sdu->msg[0] = (PDCP_D_C_DATA_PDU << 7) | ((sn >> 8) & 0x0F); sdu->msg[1] = sn & 0xFF; } void pdcp_unpack_data_pdu_long_sn(byte_buffer_t *sdu, uint32_t *sn) { // Strip header *sn = (sdu->msg[0] & 0x0F) << 8; *sn |= sdu->msg[1]; sdu->msg += 2; sdu->N_bytes -= 2; } }